期刊文献+

结合均值调整整数变换的迭代自适应可逆图像水印算法 被引量:2

Iterative adaptive reversible image watermarking algorithm combined with mean-adjustable integer transform
下载PDF
导出
摘要 现有的均值调整整数变换可逆水印算法的阈值需人工选择,位置图生成策略不完备可能导致压缩后位置图数据过大,对嵌入矢量强制划分可能导致容量足够却无法嵌入。针对以上问题,提出一种结合均值调整整数变换的迭代自适应可逆图像水印算法。首先,根据负载数据大小以及整数矢量对峰值信噪比(PSNR)的影响,采用迭代自适应算法选择调整平移量以达到水印嵌入容量和嵌入载体视觉质量的平衡;然后,结合邻近像素值相近原则给出了完备位置图生成策略以提高位置图压缩性能;最后,采用分层有序嵌入策略将负载数据依次嵌入到最低、次低和第3低有效位以避免容量足够却无法嵌入的情况。实验结果表明,与传统均值调整整数变换可逆水印算法相比,所提算法无需预先设定阈值,但依然能保持大的嵌入容量,嵌入水印后掩体视觉质量更优,位置图生成策略性能优于传统均值调整整数变换可逆水印算法生成策略且压缩后的位置图数据更小,从而间接提高了嵌入容量,在实验样例上相对于比较算法,PSNR平均提高14.4%。 In the existing reversible watermarking algorithm based on mean-adjustable integer transform, there are following defects such as non-adaptive threshold selecting, incomplete location map building strategy which may lead to poor compression performance and compulsive partition strategy for embedded vectors which may lead to a failure embedding even if embedding capacity is enough. To address these problems, an iterative adaptive reversible image watermarking algorithm combined with mean-adjustable integer transform was proposed. Firstly, according to Peak Signal-to-Noise Ratio (PSNR) affected by the payload data size and integer vector, an iterative adaptive algorithm was used in selecting mean-adjustable offsets to balance the watermarking embedding capacity and the visual quality of embedded carrier; Secondly, based on the strategy that adjacent pixels have similar pixel values, a complete location map generating strategy was proposed to improve location map compression performance; Finally, to avoid failure embedding, the proposed reversible watermarking algorithm adopted hierarchical order embedding strategy to embed payload data in order from the first least significant bits to the third least significant bits. The experimental results show that the proposed algorithm has a big embedding capacity and does not need to preset threshold. Location map building strategy has a better performance in making location map data in smaller size and increasing the capacity indirectly compared with the reversible watermarking algorithm based on mean-adjustable integer transform, and the PSNR increases by 14.4% averagely in experimental sample.
出处 《计算机应用》 CSCD 北大核心 2015年第7期1908-1914,1938,共8页 journal of Computer Applications
基金 国家自然科学基金资助项目(61100239) 教育部高等学校博士学科点专项科研基金资助项目(20110202120002) 陕西省科技新星计划资助项目(2011kjxx17) 陕西省自然科学基金资助项目(2011JQ8009) 中央高校基本科研业务费支持项目(GK201402036)
关键词 可逆整数变换 均值调整整数变换 峰值信噪比 嵌入容量 可逆水印 reversible integer transform mean-adjustable integer transform Peak Signal-to-Noise Ratio (PSNR) embedding capacity reversible watermarking
  • 相关文献

参考文献14

  • 1TIAN J. Reversible data embedding using a difference expansion [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2003, 13(8): 890-896.
  • 2ALATTAR A M. Reversible watermark using difference expansion of triplets [C]// Proceedings of the 2003 IEEE International Conference on Image Processing. Piscataway: IEEE, 2003: 501-504.
  • 3ALATTAR A M. Reversible watermark using difference expansion of quads [C]// Proceedings of the 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing. Piscataway: IEEE, 2004: 377-380.
  • 4ALATTAR A M. Reversible watermark using the difference expansion of a generalized integer transform [J]. IEEE Transactions on Image Processing, 2004, 13(8): 1147-1156.
  • 5THODI D M, RODRIGUEZ J J. Prediction-error based reversible watermarking [C]// Proceedings of the 2004 IEEE International Conference on Image Processing. Piscataway: IEEE, 2004: 1549-1552.
  • 6HU Y, LEE H-K, LI J. DE-based reversible data hiding with Improved overflow location map [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2009, 19(2): 250-260.
  • 7李建伟,胡永健,陈开英.利用预测误差直方图平移的可逆数据隐藏技术[J].中国图象图形学报,2009,14(6):1088-1095. 被引量:16
  • 8CHANG C-C, HUANG Y-H, TSAI H-Y, et al. Prediction-based reversible data hiding using the difference of neighboring pixels [J]. International Journal of Electronics and Communications, 2012, 66(9): 758-766.
  • 9NI Z, SHI Y, ANSARI N, et al. Reversible data hiding [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2006, 16(3): 354-362.
  • 10TAI W-L, YEH C-M, CHANG C-C. Reversible data hiding based on histogram modification of pixel differences [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2009, 19(6): 906-910.

二级参考文献54

  • 1Fridrich J, Goljan M, Du R. Lossless data embedding-new paradigm in digital watermarking [ J ]. EURASIP Journal on Applied Signal Processing, Special Issue on Emerging Applications of Multimedia Data Hiding, 2002,2002 ( 2 ) : 185-196.
  • 2Tian J. Reversible data embedding using a difference expansion[ J ]. IEEE Transactions on Circuits and Systems for Video Technology, 2003,13(8) : 890-896.
  • 3Celik M U, Sharma G, Tekalp A M, et al. Lossless generalized-LSB data embedding[ J]. IEEE Transactions on Image Processing, 2005, 12(2) :157-160.
  • 4Alattar A M. Reversible watermark using the difference expansion of a generalized integer transform [J]. IEEE Transactions on Image Processing. 2004.13 ( 8 ) : 1147-1156.
  • 5Kamstra L, Heijmans H J A M. Reversible data embedding into images using wavelet techniques and sorting[ J]. IEEE Transactions on Image Processing, 2005,14(12) :2082-2090.
  • 6Thodi D M, Rodriguez J J. Prediction-error based reversible watermarking[J]. In: Proceedings of IEEE International Conference on Image Proeessing[C] , Singapore, 2004,3 : 1549-1552.
  • 7Thodi D M, Rodriguez J J. Expansion embedding techniques for reversible watermarking[ J]. IEEE Transactions on Image Processing, 2007,16(3) :721-730.
  • 8Yip Shu-kei, Au O C, Wong Hoi-Ming, et al. Generalized lossless data hiding by multiple predictors [ A ]. In: Proceedings of IEEE International Symposium on Circuits and Systems [ C ], Island of Kos, Greece, 2006 : 1426-1429.
  • 9谢于明,程义民,汪云路,田源.基于整数线性变换的无损隐秘传输方法[J].中国图象图形学报,2007,12(9):1562-1567. 被引量:5
  • 10谢于明,程义民,田源,汪云路.基于整数变换的无损隐秘传输方法仿真研究[J].系统仿真学报,2007,19(19):4594-4598. 被引量:6

共引文献31

同被引文献13

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部