期刊文献+

基于改进Contourlet变换的遥感图像融合算法 被引量:6

Remote sensing image fusion algorithm based on modified Contourlet transform
下载PDF
导出
摘要 针对基于Contourlet变换的遥感融合图像空间分辨率较低的问题,提出了一种基于改进的Contourlet变换(MCT)的遥感图像融合方法。首先,对多光谱图像进行亮度-色调-饱和度(IHS)变换,得到其亮度、色调、饱和度三个分量;其次,取多光谱图像的亮度分量,与直方图匹配后的全色图像进行改进的Contourlet变换,分别获得低频子带系数与高频子带系数;然后,对低频子带系数采用平均法进行融合,对高频子带系数采用新改进的拉普拉斯能量和(NSML)作为融合规则进行融合;最后,把融合结果作为多光谱图像的亮度分量,通过IHS逆变换得到融合的遥感图像。将所提方法与基于主成分分析(PCA)和Shearlet的方法、基于PCA与小波的方法以及基于非下采样Contourlet变换(NSCT)的方法相比,所提方法在清晰度评价指标平均梯度上分别提高了7.3%、6.9%和3.9%。实验结果表明,所提方法提高了Contourlet变换的频率局部化特性和分解系数利用率,在保持多光谱信息的基础上,有效地提高了遥感融合图像的空间分辨率。 Focusing on the issue that remote sensing fusion image based on Contourlet transform has low spatial resolution, a remote sensing image fusion algorithm based on Modified Contourlet Transform (MCT) was proposed. Firstly, the multi-spectral image was decomposed into intensity component, hue component and saturation component by Intensity-Hue- Saturation (IHS) transform; secondly, Modified Contourlet decomposition was done between the intensity component and the panchromatic image after histogram matching to get low-pass subband coefficients and high-pass subbands coefficients; and then, the low-pass subband coefficients were fused by the averaging method, and the high-pass subbands coefficients were merged by Novel Sum-Modified-Laplacian ( NSML). Finally, the fusion result was regarded as the intensity component of multi-spectral image, and remote sensing fusion image was obtained by inverse IHS transform. Compared with the algorithms based on Principal Components Analysis (PCA) and Shearlet, based on PCA and wavelet, based on NonSuhsampled Contourlet Transform (NSCT), the average gradient that was used for evaluating image sharpness of the proposed method respectively increased by 7.3%, 6.9% and 3.9%. The experimental results show that, the proposed method enhances the frequency localization of Contourlet transform and the utilization of decomposition coefficients, and on the basis of keeping multi-spectral information, it improves the spatial resolution of remote sensing fusion image effectively.
出处 《计算机应用》 CSCD 北大核心 2015年第7期2015-2019,2038,共6页 journal of Computer Applications
基金 国家自然科学基金资助项目(61362021) 广西自然科学基金资助项目(2014GXNSFDA118035 2013GXNSFDA019030 2013GXNSFAA019331 2012GXNSFBA053014 2012GXNSFAA053231) 广西科学研究与技术开发计划项目(桂科攻1348020-6 桂科能1298025-7) 广西教育厅重点项目(201202ZD044 2013YB091) 桂林市科技开发项目(20130105-6 20140103-5)
关键词 图像融合 遥感图像 伪吉布斯现象 轮廓波变换 改进的拉普拉斯能量和 image fusion remote sensing image pseudo Gibbs phenomenon Contourlet transform Sum-Modified- Laplacian (SML)
  • 相关文献

参考文献17

  • 1XU H, JIANG T B. Multi-source remote sensing image fusion algorithm based on combined wavelet transform and HIS transform [J]. Journal of Convergence Information Technology, 2012, 7(18): 392-400.
  • 2FENG W, BAO W. An improved technology of remote sensing image fusion based waveled packet and pulse coupled neural net [J]. TELKOMNIKA Indonesian Journal of Electrical Engineering, 2012, 10(3): 551-556.
  • 3YANG S, WANG M, JIAO L. Contourlet hidden Markov tree and clarity-saliency driven PCNN based remote sensing images fusion [J]. Applied Soft Computing, 2012, 12(1): 228-237.
  • 4WANG J, LAI S, LI M. Improved image fusion method based on NSCT and accelerated NMF [J]. Sensors, 2012, 12(5): 5872-5887.
  • 5LI T J, WANG Y. Biological image fusion using a NSCT based variable-weight method [J]. Information Fusion, 2011, 12(2): 85-92.
  • 6LI M, DONG Y, WANG X. Image fusion algorithm based on wavelet transform and Laplacian pyramid [J]. Advanced Materials Research, 2014, 860/861/862/863: 2846-2849.
  • 7DE I, CHANDA B. Multi-focus image fusion using a morphology-based focus measure in a quad-tree structure [J]. Information Fusion, 2013, 14(2): 136-146.
  • 8WANG H J, YANG Q, LI R. Tunable-Q contourlet-based multi-sensor image fusion [J]. Signal Processing, 2013, 93(7): 1879-1891.
  • 9LIU J, YANG J, LI B. Multi-focus image fusion by SML in the Shearlet subbands [J]. TELKOMNIKA Indonesian Journal of Electrical Engineering, 2014, 12(1): 618-626.
  • 10LU H, ZHANG L, SERIKAWA S. Maximum local energy: an effective approach for multisensor image fusion in beyond wavelet transform domain [J]. Computers and Mathematics with Applications, 2012, 64(5): 996-1003.

同被引文献58

  • 1房爱青,张峰,张鸿翎,高文正,赵歆波.基于视觉显著性的组合视景图像融合方法[J].中国体视学与图像分析,2020(2):192-197. 被引量:3
  • 2崔艳荣,何彬彬,张瑛,李蔓.非负矩阵分解融合高光谱和多光谱数据[J].遥感技术与应用,2015,30(1):82-91. 被引量:5
  • 3郁文贤,雍少为,郭桂蓉.多传感器信息融合技术述评[J].国防科技大学学报,1994,16(3):1-11. 被引量:157
  • 4章毓晋.图像工程[M].3版.北京:清华大学出版社,2013.
  • 5LUO R C.Data fusion and sensor integration:state-of-art1990s[C]//Proceedings of 1992 International Conference on Data Fusion in Robotics and Machine Intelligence.[S.l.:s.n.],1992:127-135.
  • 6MITCHELL H B.Multi-sensor data fusion:an introduction[M].Berlin:Springer Publishing Company,2007.
  • 7EGFIN NIRMALA D,VAIDEHI V.Comparison of pixel-level and feature level image fusion methods[C]//Proceedings of2015 2nd International Conference on Computing for Sustainable Global Development.New Delhi:Bharati Vidyapeeth,2015:743-748.
  • 8MANGALRAJ P,AGRAWAL R A.An efficient method based on wavelet for fusion of multi-sensor satellite images[C]//Proceedings of 2015 IEEE International Conference on Electrical,Computer and Communication Technologies.[S.l.]:IEEE,2015:1-6.
  • 9杨璐菁,余华.多源信息融合理论与应用[M].北京:北京邮电大学出版社,2006:1-20.
  • 10KONG W W.Multi-sensor image fusion based on NSST domain I2CM[J].Electronics letters,2013,49(19):802-803.

引证文献6

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部