期刊文献+

在线融合特征的眼睛状态识别算法 被引量:4

Eye state recognition algorithm based on online features
下载PDF
导出
摘要 针对人脸视频中眼睛定位精度影响眼睛状态识别正确率问题,提出了一种融合在线肤色模型的眼睛状态识别算法。首先,在人脸主动表观模型(AAM)定位的基础上,使用当前用户的肤色特征,建立在线肤色模型;其次,在初步定位的眼睛区域,再次使用在线肤色模型,定位内外眼角点的精确位置,并利用眼角点的位置信息提取精确的眼睛区域;最后,提取眼睛区域的局部二值特征(LBP),使用支持向量机(SVM)算法,实现对眼睛睁闭状态的鲁棒识别。实验结果表明,对比全局定位的眼角点定位算法,该算法可以进一步降低眼角点的对齐误差,在低分辨人脸中使用在线融合特征的睁闭眼状态的准确识别率分别为95.03%及95.47%,分别比直接使用Haar特征和Gabor特征的识别率提升2.9%和4.8%,在实时人脸视频中,使用在线特征可以明显提高眼睛状态识别效果。 Focusing on the issue that the eye localization accuracy drastically affects the correct recognition rate of the eye state, an eye state recognition algorithm combined with online skin feature model was proposed. Firstly, an online skin model was established by fusing the Active Appearance Model (AAM) of the received face image and the skin characteristics of the active user. Secondly, in the preliminary positioned eye area, location of the inner and outer comers of the eyes, and the the online skin model was used again to calculate the precise optimal eye positions were computed by reference of the eye comers. Finally, the Local Binary Pattern (LBP) in the eye area was extracted, and the close and open state of the eyes was recognized effectively based on the Support Vector Machine (SVM). In the comparison experiments with eye comers location algorithm of global localization, the location error was further reduced, and in a low resolution face image, the average recognition accuracy of open eye state and close eye state were 95.03% and 95.47% respectively. Compared with the algorithms based on Haar features and Gabor features, the efficiency increased by 2.9% and 4.8% respectively. The theoretical analysis and simulation results show that the algorithm based on online feature can effectively improve the recognition efficiency of the eye state from real-time face video.
作者 徐国庆
出处 《计算机应用》 CSCD 北大核心 2015年第7期2062-2066,共5页 journal of Computer Applications
基金 湖北省自然科学基金资助项目(2014CFB786) 湖北省高等学校青年教师深入企业行动计划项目(XD2014146) 武汉工程大学科学研究基金资助项目
关键词 人机交互 肤色模型 特征定位 眼睛状态识别 局部特征 human computer interaction skin model feature location eye state recognition local feature
  • 相关文献

参考文献12

  • 1陈莹,艾春璐.条件主动外观模型下的人脸特征点跟踪[J].计算机辅助设计与图形学学报,2013,25(4):510-518. 被引量:10
  • 2KAWAGUCHI T, HIDAKA D, RIZON M. Detection of eyes from human faces by hough transform and separability filter [C]// ICIP 2010: Proceedings of the 2010 7th IEEE International Conference on Image Processing. Piscataway: IEEE, 2010: 49-52.
  • 3VALENTI R, GEVERS T. Accurate eye center location and tracking using isophote curvature [C]// CVPR 2008: Proceedings of the 2008 26th IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2008: 322-329.
  • 4ZHOU Z, GENG X. Projection functions for eye detection [J]. Pattern Recognition, 2004, 37(5): 1049-1056.
  • 5ZHENG Z, YANG J, YANG L. A robust method for eye feature extraction on color image [J]. Pattern Recognition Letters, 2005, 26(14): 2252-2261.
  • 6KHOSRAVI M H, SAFABAKHSH R. Human eye sclera detection and tracking using a modified time adaptive self-organizing map [J]. Pattern Recognition, 2008, 41(8): 2571-2593.
  • 7唐旭晟,欧宗瑛,苏铁明,赵鹏飞.复杂背景下人眼的快速定位[J].计算机辅助设计与图形学学报,2006,18(10):1535-1540. 被引量:14
  • 8XU G, WANG Y. Real time detection of eye corners and iris center from images acquired by usual camera [J]. International Journal of Intelligent Engineering & Systems, 2010, 3(1): 25-32.
  • 9LEE T S. Image representation using 2D Gabor wavelets [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(10): 959-971.
  • 10LIN S D, LIN J J, CHUNG C-Y. Sleepy eye's recognition for drowsiness detection [C]// ISBAST 2013: Proceedings of the 2013 International Symposium on Biometrics and Security Technologies. Piscataway: IEEE, 2013: 176-179.

二级参考文献53

  • 1宋加涛,刘济林,池哲儒,王蔚.人脸正面图像中眼睛的精确定位[J].计算机辅助设计与图形学学报,2005,17(3):540-545. 被引量:13
  • 2Riopka T P,Boult T.The eyes have it[C] //Proceedings of the 2003 ACM SIGMM Workshop on Biometrics Methods and Applications.Berkley,California:ACM Press,2003:9-16
  • 3Viola P,Jones M.Rapid object detection using a boosted cascade of simple features[C] //Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Kauai,HI:IEEE Computer Society,2001:511-518
  • 4Rowly H,Baluja S,Kanade T.Neural network-based face detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(1):23-38
  • 5Henry S,Takeo K.A statistical model for 3D object detection applied to faces and cars[C] //Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Hilton Head Island,SC:IEEE Computer Society,2000:746-751
  • 6Zhou Zhihua,Geng Xin.Projection functions for eye detection[J].Pattern Recognition,2004,37(5):1049-1056
  • 7Kawaguchi T,Hikada D,Rizon M.Detection of the eyes from human faces by Hough transform and separability filter[C] //Proceedings of IEEE International Conference on Image Processing.Vancouver,BC:IEEE Computer Society,2000:49-52
  • 8Lucey S,Sridharan S,Chandran V.Improved facial feature detection for AVSP via unsupervised clustering and discriminant analysis[J].Eurasip Journal on Applied Signal Processing,2003,3:264-275
  • 9Wu J,Zhou Z-H.Efficient face candidates selector for face detection[J].Pattern Recognition,2003,36(5):1175-1186
  • 10Freund Y,Schapire R.A dection-theoretic generalization of on-line learning and an application to boosting[J].Journal of Computer and System Sciences,1997,55(1):119-139

共引文献28

同被引文献21

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部