期刊文献+

基于信号杂波噪声比的认知雷达扩展目标探测波形设计 被引量:5

Cognitive radar waveform design for extended target detection based on signal-to-clutter-and-noise ratio
下载PDF
导出
摘要 针对认知雷达在杂波环境下探测扩展目标时,回波信号的信号杂波噪声比(SCNR)较低的问题,提出了一种基于SCNR认知雷达发射波形优化设计方法。首先,不同于以往的点目标模型,通过建立扩展目标探测模型,得到认知雷达回波信号杂波噪声比(SCNR)与发射信号能量谱密度(ESD)间的关系;其次,根据最大SCNR准则推导出发射信号ESD的全局最优解;最后,为了得到有实际意义的时域信号,采用相位调制的方式,结合最小均方误差(MMSE)和迭代算法将最优ESD合成满足雷达发射要求的恒幅时域信号。仿真实验中,该方法所得时域合成信号幅度为1,在匹配滤波器输出端的SCNR为19.133 d B,仅小于理想值0.005 d B。结果表明,所得到的时域波形不仅能够满足恒幅要求,而且能使接收机输出端的SCNR接近理想值,提高了扩展目标探测性能。 Focusing on the issue that the Signal-to-Clutter-and-Noise Ratio (SCNR) of echo signal is low when cognitive radar detects extended target, a waveform design method based on SCNR was proposed. Firstly, the relation between the SCNR of cognitive radar echo signal and the Energy Spectral Density (ESD) of transmitted signal, was gotten by establishing extended target detection model other than previous point target model; secondly, according to the maximum SCNR criterion, the global optimal solution of the transmitted signal ESD was deduced; finally, in order to get a meaningful time-domain signal, ESD was synthesized to be a constant amplitude based on phase-modulation after combining with the Minimum Mean- Square Error (MMSE) and iterative algorithm, which met the emission requirements of radar. In the simulation, the amplitude of time-domain synthesized signal is uniform, and its SCNR at the output of the matched filter is 19. 133 dB, only 0.005 dB less than the ideal value. The results show that not only can the time-domain waveform meet the requirement of constant amplitude, but also the SCNR obtained at receiver output can achieve the best approximation to the ideal value, and it improves the performance of the extended target detection.
出处 《计算机应用》 CSCD 北大核心 2015年第7期2105-2108,2112,共5页 journal of Computer Applications
基金 国家自然科学基金面上项目(61377089) 山西省自然科学基金资助项目(2013011019-6) 山西省工业攻关项目(20140321003-02) 山西省教育厅科技创新项目(2014112) 太原市万柏林区科技项目(20140306)
关键词 认知雷达 波形设计 信号杂波噪声比 时域信号 最小均方误差 cognitive radar waveform design Signal-to-Clutter-and-Noise Ratio (SCNR) time domain signal Minimum Mean-Square Error (MMSE)
  • 相关文献

参考文献19

  • 1HAYKIN S. Cognitive radar: a way of the future [J]. IEEE Signal Processing Magazine, 2006, 23(1): 30-40.
  • 2HAYKIN S. Cognition is the key to the next generation of radar systems [C]// DSP/SPE 2009: Proceedings of the IEEE 13th Digital Signal Processing Workshop and 5th IEEE Signal Processing Education Workshop. Piscataway: IEEE, 2009: 463-467.
  • 3HAYKIN S, ZIA A, ARASARATNAM I, et al. Cognitive tracking radar [C]// Proceedings of the 2010 IEEE Radar Conference. Piscataway: IEEE, 2010: 1467-1470.
  • 4HAYKIN S, XUE Y, SETOODEH P. Cognitive radar: step toward bridging the gap between neuroscience and engineering [J]. Proceedings of the IEEE, 2012, 100(11): 3102-3130.
  • 5黎湘,范梅梅.认知雷达及其关键技术研究进展[J].电子学报,2012,40(9):1863-1870. 被引量:77
  • 6COCHRAN D, SUVOROVA S, HOWARD S D, et al. Waveform libraries [J]. IEEE Signal Processing Magazine, 2009, 26(1): 12-21.
  • 7王彬,汪晋宽,宋昕,韩英华.认知雷达中基于Q学习的自适应波形选择算法[J].系统工程与电子技术,2011,33(5):1007-1012. 被引量:5
  • 8PILLAI S U, OH H S, YOULA D C, et al. Optimum transmit-receiver design in the presence of signal-dependent interference and channel noise [C]// Proceedings of the 1999 Conference Record of the Thirty-Third Asilomar Conference on Signals, Systems, and Computers. Piscataway: IEEE, 1999: 870-875.
  • 9FRIEDLANDER B. Waveform design for MIMO radars [J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(3): 1227-1238.
  • 10AUBRY A, de MAIO A, PIEZZO M, et al. Cognitive design of the receive filter and transmitted phase code in reverberating environment [J]. IET Radar, Sonar & Navigation, 2012, 6(9): 822-833.

二级参考文献96

  • 1赵知劲,郑仕链,孔宪正.认知无线电中频谱感知技术[J].现代雷达,2008,30(5):65-69. 被引量:7
  • 2卢建斌,胡卫东,郁文贤.多功能相控阵雷达实时任务调度研究[J].电子学报,2006,34(4):732-736. 被引量:56
  • 3Haykin S. Cognitive radar: a way of the future[J]. IEEE Signal Processing Magazine, 2006,23 (1)30 - 40.
  • 4Haykin S. Cognition is the key to the next generation of radar systems[C]//Proc, of Digital Signal Processing Workshop and 5th IEEE Signal Processing Education Workshop, 2009 : 463 - 467.
  • 5Arasaratnam I, Haykin S. Cubature Kalman filters[J]. IEEE Trans. on Automatic Control, 2009,54(6)1254 - 1269.
  • 6Rago C, Willett P, Bar-Shalom Y. Detecting-tracking performance with combined waveforms[J]. IEEE Trans. on Aerospace and Electronic Systems, 1998,34(2) : 612 - 624.
  • 7Friedlander B. Adaptive waveform design for a multi-antenna radar system[C].//Proc, of the 40th Asilomar Conference on Signals, Systems and Computer, 2006 : 735 - 739.
  • 8Goodman N A, Venkata P R, Neifeld M A. Adaptive waveform design and sequential hypothesis testing for target recognition with active sensors[J].IEEE Journal of Selected Topics in Signal Processing, 2007,1 (1) 105 - 113.
  • 9Leshem A, Naparstek O, Nehorai A. Information theoretic adaptive radar waveform design for multiple extended targets[J]. IEEEJournal of Selected Topics in Signal Processing, 2007,1( 1 ) : 42 - 55.
  • 10Sira S P, Cochran D. Adaptive waveform design for improved detec tion of Iow-RCS targets in heavy sea clutter[J]. IEEE Journal of Selected Topics in Signal Processing, 2007,1 (1) : 56 - 66.

共引文献100

同被引文献50

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部