期刊文献+

一致连续的多维倒向随机微分方程的L^1解 被引量:1

On the L^1 solution for multidimensional BSDEs with uniformly continuous generators
原文传递
导出
摘要 建立了一致连续的多维倒向随机微分方程(BSDE)L1解的一个新的存在唯一性结果,其中生成元g关于y满足Osgood条件,关于z是α-Hlder(0<α<1)连续的,并且g的第i个分量仅仅依赖于矩阵z的第i行. It is established that a new existence and uniqueness result for the L1 solution to a multidimensional backward stochastic differential equations( BSDEs) with uniformly continuous generators,where the generator g satisfies the Osgood condition in y and the α- Hlder( 0 α 1) continuity condition in z,and the ith component gt( t,y,z) of g only depends on the ith row of matrix z.
出处 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第4期475-484,共10页 Journal of Yunnan University(Natural Sciences Edition)
基金 国家自然科学基金(11101422 11371362) 中国博士后科学基金(2013M530173 2014T70386) 江苏省青蓝工程专项基金(苏教师[2012]39)
关键词 多维倒向随机微分方程 L1解 Osgood条件 HOLDER连续 存在唯一性 multidimensional backward stochastic differential equation L1 solution Osgood condition Holder continity existence and uniqueness
  • 相关文献

参考文献22

  • 1PARDOUX E, PENG S G.Adapted solution of a backward stochastic differential equation [ J ] .Systems Control Letters, 1990, 14: 55-61.
  • 2EL KAROUI N,PENG S G,QUENEZ M C.Backward stochastic differential equations in Finance[ J] .Mathematical Finance, 1997,7:1-71.
  • 3PARDOUX E E.BSDEs, weak convergence and homogenization of semilinear PDEs [ C ].Nonlinear Analysis, Differential Equa- tions and Control.Dordrecht: Kluwer Academic Publishers, 1997 : 503-549.
  • 4PENG S G.Backward stochastic differential equations ,nonlinear expectation and their applications[ C] .Proceedings of the In- ternational Congress of Mathematicians, 2010: 393-432.
  • 5MAO X R. Adapted solutions of backward stochastic differential equations with non-Lipschitz coefficients [J].Stochastic Processes and Their Applications, 1995,58 : 281-292.
  • 6HAMADINE S. Multidimensional backward stochastic differential equations with uniformly continuous coefficients [ J ]. Ber- noulli, 2003,9: 517-534.
  • 7FAN S J, JIANG L, DAVISON M.Unlqueness of solutions for multidimensional BSDEs with uniformly continuous generators [J] .C R Acad Sci Paris SOt 1,2010,348:683-686.
  • 8HU Y, TANG S J.Multi-dimensional backward stochastic differential equations of diagonally quadratic generators [ J ]. arXiv: 1408.4579vl [ math.PR] ,2014:1-17.
  • 9BRIAND P, DELYON B, HU Y, et al. Solutions of backward stochastic differential equations [ J ]. Stochastic Processes and Their Applications, 2003,108:109-129.
  • 10侯杰,肖立顺,范胜君.终端时间可为无限的BSDE解的递归迭代序列的收敛性及解的存在唯一性[J].云南大学学报(自然科学版),2012,34(4):380-384. 被引量:4

二级参考文献30

  • 1Pardoux E, Peng S. Adapted solution of a backward stochastic differential equation. Systems Control Lett, 1990, 14: 55-61.
  • 2Briand Ph, Delyon B, Hu Y, et al. L^p solutions of backward stochastic differential equations. Stochastic Process Appl, 2003, 108:109-129.
  • 3Briand Ph, Hu Y. BSDE with quadratic growth and unbounded terminal value. Probab Theory Related Fields, 2006, 136:604-618.
  • 4Briand Ph, Lepeltier J, San Martin J. One-dimensional BSDEs whose coefficient is monotonic in y and non-Lipschitz in z. Bernoulli, 2007, 13:80-91.
  • 5Fan S, Jiang L. Existence and uniqueness result for a backward stochastic differential equation whose generator is Lioschitz continuous in y and uniformly continuous in z. J Appl Math Comput, 2010, 36:1-10.
  • 6Fan S, Jiang L. Finite and infinite time interval BSDEs with non-Lipschitz coefficients. Statist Probab Lett, 2010, 80: 962-968.
  • 7Fan S, Liu D. A class of BSDEs with integrable parameters. Statist Probab Lett, 2010, 80:2024-2031.
  • 8Hamad~ne S. Multidimensional backward stochastic differential equations with uniformly continuous coefficients. Bernoulli, 2003, 9:517-534.
  • 9Jia G. A uniqueness theorem for the solution of backward stochastic differential equations. C R Acad Sci Paris, Ser I, 2008. 346:439-444.
  • 10Kobylanski M. Backward stochastic differential equations and partial equations with quadratic growth. Ann Probab, 2000, 28:259-276.

同被引文献6

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部