期刊文献+

计及弯曲刚度的印刷运动薄膜横向振动控制研究 被引量:3

Transverse Vibration Control of Moving Printing Membranes With Bending Stiffness
下载PDF
导出
摘要 研究了不同边界条件下,计及弯曲刚度的轴向运动薄膜横向振动的主动控制问题.建立计及弯曲刚度的印刷运动薄膜的计算模型.利用有限差分法,对轴向运动薄膜的振动微分方程进行离散,推导出轴向运动矩形薄膜横向振动控制系统的状态方程.采用次最优控制法,对不同边界条件下轴向运动矩形薄膜横向振动进行主动控制研究.计算结果表明:采用次最优控制法能够在短时间内迅速、有效地降低运动薄膜的振动强度,并使之衰减趋近于0.作动器作用在固定位置点处时,对运动薄膜施加控制后,四边简支边界条件下的控制效果好.作动器作用在不同位置点处时,两种边界条件下中心点处的控制效果最好.计算证明次最优控制法能够有效地抑制印刷过程中计及弯曲刚度的轴向运动薄膜的横向振动,从而提高印刷套印精度,保证精密印刷质量. The active control of transverse vibration of axially moving rectangular membranes with bending stiffness was investigated during the printing process. A computing model for the moving printing membrane with bending stiffness was established. The discretized dynamic equations for the moving membrane were obtained with the finite difference method,and the state equations of the transverse vibration control system for the moving membrane were derived. The suboptimal control method was applied to conduct the active control of transverse vibration of the moving membrane under various boundary conditions of actual printing processes. The calculated results showthat the vibration of the moving rectangular membrane can be controlled effectively within a short time with the suboptimal vibration control method.The control effect will be better when the actuators act on some fixed nodes with 4 edges simply supported; when the actuators act on variable nodes,the control effect will be the best in the case of central point actuation under the 2 types of boundary conditions,where the dimensionless time of velocity attenuation to zero is shorter than those in the other cases of actuation at the rest nodes. It is indicated that the transverse vibration of axially moving rectangular membranes can be controlled effectively with the suboptimal control method,thus the printing precision can be promoted and the printing quality ensured.
出处 《应用数学和力学》 CSCD 北大核心 2015年第7期686-699,共14页 Applied Mathematics and Mechanics
基金 国家自然科学基金(11272253 11202159 51305341) 陕西省自然科学基金(2014JM7290) 陕西省重点实验室项目(13JS081)~~
关键词 轴向运动薄膜 弯曲刚度 横向振动 控制 axially moving membrane bending stiffness transverse vibration control
  • 相关文献

参考文献16

  • 1Altunsaray E, Bayer I. Deflection and free vibration of symmetrically laminated quasi-isotropic thin rectangular plates for different boundary conditions [J]. Ocean Engineering, 2013, 57: 197-222.
  • 2YU Tian-chong, NIE Guo-jun, ZHONG Zheng, CHU Fu-yun. Analytical solution of rectangular plate with in-plane variable stiffness[ J 1- Applied Mathematics and Mechanics( English Edi- tion), 2013, 34(4): 395-404.
  • 3唐有绮,陈立群.面内平动黏弹性板非线性振动的内-外联合共振[J].应用数学和力学,2013,34(5):480-487. 被引量:6
  • 4TANG You-qi, CHEN Li-qun. Stability analysis and numerical confirmation in parametric reso- nance of axially moving viscoelastic plates with time-dependent speedE Jl. European Journal of Mechanics- A/Solids, 2013, 37: 106-121.
  • 5CHEN Li-qun, YANG Xiao-dong. Steady-state response of axially moving viscoelastic beams with pulsating speed: comparison of two nonlinear models [ J 1. International Journal of Sol- ids and Structures, 2005, 42( 1 ) : 37-50.
  • 6CHEN Li-qun, YANG Xiao-dong. Transverse nonlinear dynamics of axially accelerating viscoe- lastic beams based on 4-term Galerkin truncation[ Jl. Chaos, Solitons & Fractals, 2006, 27 (3) : 748-757.
  • 7Kim J, Cho J, Lee U, Park S. Modal spectral element formulation for axially moving plates subjected to in-plane axial tension EJ]. Computers & Structures, 2003, 81( 20): 2011-2020.
  • 8周银锋,王忠民.轴向运动粘弹性板的横向振动特性[J].应用数学和力学,2007,28(2):191-199. 被引量:28
  • 9Saksa T, Banichuk N, Jeronen J, Kurki M, Tuovinen T. Dynamic analysis for axially moving viscoelastic panels [ J ]. International Journal of Solids and Structures, 2012, 49 ( 23/24 ) : 3355-3366.
  • 10Greco D, Blanc P. Active vibration control of flexible materials found within printing ma- chines [ J 1- Journal of Sound and Vibration, 2007, 300 ( 3/5 ) : 831-846.

二级参考文献27

  • 1A.S.J.阿尔赛夫,朱正佑.求解粘性流体和热迁移联立方程的迎风局部微分求积法[J].应用数学和力学,2004,25(10):1033-1041. 被引量:6
  • 2王鑫伟.微分求积法在结构力学中的应用[J].力学进展,1995,25(2):232-240. 被引量:90
  • 3Fung R-f,Huang J-S,Chen Y-C.The transient amplitude of the viscoelastic traveling string:an integral constitutive law[J].Journal of Sound and Vibration,1997,201(2):153-167.
  • 4CHEN Li-qun,ZHAO Wei-jia,Jean W Zu.Transient responses of an axially accelerating viscoelastic string constituted by a fractional differentiation law[J].Journal of Sound and Vibration,2004,278(4/5):861-871.
  • 5CHEN Li-qun.Analysis and control of transverse vibrations of axially moving strings[J].ASME Applied Mechanics Reviews,2005,58(2):91-116.
  • 6CHEN Li-qun,YANG Xiao-dong.Steady-state response of axially moving viscoelastic beams with pulsating speed:comparison of two nonlinear models[J].Internat J Solids and Structures,2005,42(1):37-50.
  • 7CHEN Li-qun,YANG Xiao-dong.Transverse nonlinear dynamics of axially accelerating viscoelastic beams based on 4-term Galerkin truncation[J].Chaos,Solitons and Fractals,2006,27(3):748-757.
  • 8Ulsoy A G,Mote Jr C D.Vibration of wide band saw blades[J].ASME Journal of Engineering for Industry,1982,104(1):71-78.
  • 9Lin C C.Stability and vibration characteristics of axially moving plates[J].Internat J Solids and Structures,1997,34(24):3179-3190.
  • 10Kim Joohong,Cho Jooyong,Lee Usik,et al.Modal spectral element formulation for axially moving plates subjected to in-plane axial tension[J].Computers and Structures,2003,81(20):2011-2020.

共引文献59

同被引文献22

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部