期刊文献+

带Riemann-Stieltjes积分条件的三阶边值问题的单调正解 被引量:1

Multiple Monotone Positive Solutions to 3rd-Order Boundary Value Problems Involving Riemann-Stieltjes Integral Conditions
下载PDF
导出
摘要 研究了一类带Riemann-Stieltjes积分条件的非线性三阶非局部边值问题,将边值问题正解存在性的研究转化为扰动Hammerstein积分方程的研究,通过构造Green(格林)函数及讨论其性质,运用推广的Leggett-Williams型不动点定理,得到了至少存在3个和2n-1个正解的存在性准则,所得结果推广和改进了最近文献中的结果,并充分反映了非线性项含导数对正解存在性研究的影响.主要结果由实例加以阐述. A class of 3rd-order nonlocal boundary value problems( BVPs) with R iemann-Stieltjes integral conditions were studied. The existence of positive solutions to BVPs was explored via perturbed Hammerstein integral equations. Through the construction of the Green functions and discussion on their properties,the existence criterion for at least 3 or 2n- 1 positive solutions was obtained by means of the generalization of the Leggett-Williams fixed point theorem. The results generalize and improve some known results of the latest literatures,and fully reflect the influence of nonlinear terms involving derivatives on the existence of positive solutions. An example was also included to illustrate the main results.
作者 张海娥
出处 《应用数学和力学》 CSCD 北大核心 2015年第7期779-786,共8页 Applied Mathematics and Mechanics
基金 唐山学院科学研究基金(15003B) 唐山学院市属重点实验室项目(tsxyzdsy019)的资助
关键词 LEGGETT-WILLIAMS不动点定理 正解 非局部 积分条件 Leggett-Williams fixed point theorem positive solution nonlocal integral condition
  • 相关文献

参考文献15

  • 1Gregus M. Third Order Linear Differential Equations E M 1. Mathematics and Its Applications 22. Dordrecht: D Reidel Publishing Company, 1987.
  • 2Aftabizadeh A R, Gupta C P, XU Jian-ming. Existence and uniqueness theorems for three- point boundary value problems[ J~. SIAM Journal on Mathematical Analysis, 1989, 20(3) : 715-725.
  • 3Aftabizadeh A R, Deimling K. A three-point boundary value problem[ J~. Differential and In- tegral Equations, 1991, 4(1) : 189-194.
  • 4Bernis F, Peletier L A. Two problems from draining flows involving third-order ordinary dif- ferential equations[ Jl. SIAM Journal on Mathematical Analysis, 1996, 27(2) : 515-527.
  • 5Graef J R, Yang B. Positive solutions of a third order nonlocal boundary value problem [ J 1. Discrete and Continuous Dynamical Systems-Series S, 2008, 1( I ) : 89-97.
  • 6YAO Qing-liu. Positive solutions of singular third-order three-point boundary value problems [Jl. Journal of Mathematical Analysis and Applications, 2009, 354( 1 ): 207-212.
  • 7WANG You-yu, GE Wei-gao. Existence of solutions for a third order differential equation with integral boundary conditions [ J 1. Computers & Mathematics With Applications, 2007, 53 (1): 144-154.
  • 8ZHAO Jun-fang, WANG Pei-guang, GE Wei-gao. Existence and nonexistence of positive solu-tions for a class of third order BVP with integral boundary conditions in Banach spaces [ J ]. Communications in Nonlinear Science and Numerical Simulation, 201 l, 16( 1 ) : 402-413.
  • 9ZHANG Hai-e. Multiple positive solutions of nonlinear BVPs for differential systems involving integral conditions[J~. Bounda~j Value Problems, 2014, 2014: 61. doi: 10.1185/1587-2770- 2014-51.
  • 10张建元,赵书芬,韩艳.K-解析函数的Riemann边值问题[J].应用数学和力学,2014,35(7):805-814. 被引量:3

二级参考文献25

  • 1张建元.共轭解析函数的Riemann边值问题[J].北京工业大学学报,1996,22(3):99-106. 被引量:15
  • 2张建元.一类复调和函数的Riemann边值问题[J].宁夏大学学报(自然科学版),1996,17(1):70-71. 被引量:5
  • 3张建元.K-解析函数及其存在的条件[J].云南民族大学学报(自然科学版),2007,16(4):298-302. 被引量:20
  • 4Schot S H. Jerk: the time rate of change of acceleration[J]. Am J Phys, 1978, 46( 11): 1090-1094.
  • 5Aktas M F, Tiryaki A, Zafer A. Oscillation criteria for third order nonlinear functional differ- ential equations[J]. Appl Math Letters, 2010, 23(7): 755-752.
  • 6Aktas M F, Tiryaki A, Zafer A. Integral criteria for oscillation of third order nonlinear differ- ential equations[ J]. Nonl Anal, 2009, 71 (12) : 1496-1502.
  • 7Grace S R, Agarwal R P, Pavani R, Thandapani E. On the oscillation of certain third order nonlinear functional differential equations [J]. Appl Math Comput, 2008, 202 (1) : 102-112.
  • 8Grace S R, Agarwal R P , Aktas M F. On the oscillation of third order functional differential equations[J]. Indian J Pure Appl Math, 2008, 39(4) : 491-507.
  • 9Tiryaki A, Aktas M F. Oscillation criteria of a certain class of third order nonlinear delay dif- ferential equations with damping [J]. J Math Anal Appl, 2007, 325 ( 1 ) : 54-58.
  • 10Saker S H. Oscillation criteria of third order nonlinear delay differential equations [ J ]. Math Slovaca, 2006, 56(4) : 433-450.

共引文献9

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部