期刊文献+

在线广告中改进数据分层的动态点击率评估算法 被引量:2

Dynamical Click-through Rate Estimation Algorithm by Improving Data Hierarchy in Online Advertising
下载PDF
导出
摘要 在线广告作为广告主向用户传达信息的载体,在这个信息过载的时代具有重要的意义.点击率是在线广告中的一个重要的指标,能够帮助广告主进行广告性能优化和广告预算投放.然而,由于其数据稀疏性的特征,使得点击率的评估难以达到很高的准确度.为了准确地评估点击率,本文不仅从机器学习中基于决策树分类器的角度加以改进,而且从广告数据本身的角度出发,充分考虑数据本身的层次关系,增加了对点击与展现随时间的演化建模,提出了一种动态点击率模型算法.在真实互联网广告数据中对所设计的算法进行实现,并与传统机器学习的算法做实验对比,AUC值提升幅度达到17%,验证了本文提出的算法是对数据稀疏问题的有效解决方案. As a carder used to convey information to users by advertisers,online advertising has the vital significance in the era of in-formation overload. Click-through rate is an important indicator of online advertising, to help advertisers on advertising performance e-valuation and budget planning. However,due to data sparsity,the accuracy of click-through rate estimation is not so high. In order toestimate accurately the click-through rate, We not only improve from the perspective of decision tree classification tool in machinelearning, but also from the perspective of the data itself, considering full the hierarchies of data itself, increasing click and impression e-volution with time modeling, proposing a dynamic click-through rate estimating algorithm. We implement the algorithm in the real on-line advertising data. Comparedto traditional machine learning algorithm, the result shows that AUC value increases to 17%, it is veri-fied that the algorithm I propose is an effective solution to the data sparsity problem.
出处 《小型微型计算机系统》 CSCD 北大核心 2015年第7期1492-1497,共6页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61070226)资助
关键词 点击率 在线广告 数据分层 机器学习 Click-through rate Online-advertising data hierarchies machine learning
  • 相关文献

参考文献2

二级参考文献21

  • 1余慧佳,刘奕群,张敏,茹立云,马少平.基于大规模日志分析的搜索引擎用户行为分析[J].中文信息学报,2007,21(1):109-114. 被引量:117
  • 2赛迪网.2007中国搜索引擎市场研究专题报告[OL].[2007-11-10].http;//www.sowang.com/news/20071116-1.htm.
  • 3中国互联网络信息中心.第23次中国互联网络发展状况统计报告[OL].[2009-01-01].http://www.cnnic.net,cn/uploadfiles/doc/2009/1/13/92209.doe.
  • 4中国互联网络信息中心.第16次中国互联网络发展状况统计报告[OL].[2005-07-20].http://www.cnnic.net.cn/uploadfiles/pdf/2005/7/20/210342.pdf.
  • 5Bilenko M, White R W. Mining the search trails of surfing crowds: Identifying relevant websites from user activity[C] //Proc of the 17th lnt Conf on World Wide Web (WWW'08). New York: ACM, 2008; 51-60.
  • 6Animesh A, Vandana R, Siva V. An empirical investigation of the performance of online sponsored search markets [C]// Proc of the 9th Inte Conf on Electronic Commerce (ICEC'07). New York: ACM, 2007: 153-160.
  • 7Anindya G, Sha Y. An empirical analysis of sponsored search performance in search engine advertising [C]//Proc of the Int Conf on Web Search and Web Data Mining (WSDM'08). New York: ACM, 2008:241-250.
  • 8Jansen B J, Resniek M. An examination of searcher's perceptions of nonsponsored and sponsored links during ecommerce Web searching[J]. Journal of the American Society for Information Science and Technology, 2006, 57 (14) : 1949-1961.
  • 9Jansen B J. The comparative effectiveness of sponsored and nonsponsored links for Web e-commerce queries [J]. ACM Trans on the Web, 2007, 1(1) : 1-25.
  • 10Pan S J, Yang Q. A survey on transfer learning [ J]. IEEE Trans- actions on Knowledge and Data Engineering, 2010,22 ( 10 ) : 1345 - 1359.

共引文献12

同被引文献14

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部