期刊文献+

采用深层神经网络中间层特征的关键词识别 被引量:2

Keyword Spotting Based on Deep Neural Networks Bottleneck Feature
下载PDF
导出
摘要 在基于模板匹配的关键词识别中,提出采用深层神经网络的中间层特征(bottleneck,BN)作为特征输入,将其取代传统的声学参数来生成后验概率图.首先采用传统语音识别的过程训练一个中间层很窄的深层神经网络,将所有的语音特征经过这个神经网络后得到稳健的BN特征;然后利用混合高斯模型将BN特征转化成后验概率图;在识别过程中,利用后验概率图作为特征参数,采用简化的分段动态时间规整算法实现关键词匹配.在TIMIT数据库上,相对于采用传统感知线性参数的系统,采用BN特征的系统,识别准确率有30%的提升. In this paper, the BN ( bottleneck ) features extracted from DNN ( Deep Neural Networks ) are adopted to replace the tradi-tional acoustic features in template-based Keyword Spotting. Firstly a traditional speech recognition DNN with narrow bottleneck istrained,then the acoustic features are transformed to BN feature through this BN feature extractor. The BN features are fed into aGMM ( Gaussian Mixture Model ) to generate Gaussian posteriorgrams, which will be served as the input of segmental DTW (Dynam-ic Time Warping ). A language independent keyword spotting experiments are carried in TIMIT corpus. Experimental results demon-strate that the BN features can outperform the conventional PLP ( Perceptual Linear Prediction ) acoustical features, with an absoluterecognition accuracy improvement of 30%.
出处 《小型微型计算机系统》 CSCD 北大核心 2015年第7期1540-1544,共5页 Journal of Chinese Computer Systems
基金 安徽省自然科学基金项目(1408085MNL78)资助
关键词 识别 分段动态时间规整 深层神经网络 中间层 keyword spotting segmental dynamic time warping deep neural networks bottleneck
  • 相关文献

参考文献11

  • 1Szoke I, Motlicek P, Valente F. Improving acoustic based keyword spotting using LVCSR lattices[R]. Idiap,2012.
  • 2Barakat M S.Ritz C H,Stirling D A. Keyword spotting based on the analysis of template matching distances [ C ]. Signal Processing and Communication Systems (ICSPCS) ,2011 5 th International Conference on. IEEE,2011:1 -6.
  • 3Li P,Liang J,Xu B. A novel instance matching based unsupervised keyword spotting system [ C]. IEEE International Conference on Innovative Computing, Information and Control (ICICIC'07) ,2007: 550-550.
  • 4Hazen T J.Shen W, White C. Query-by-example spoken term detection using phonetic posteriorgram templates [ C]. Automatic Speech Recognition & Understanding, ASRU, IEEE Workshop on. IEEE,2009:421-426.
  • 5Park A S,Glass J R. Unsupervised pattern discovery in speech[ J]. Audio, Speech, and Language Processing, IEEE Transactions on, 2008,16(1) :186-197.
  • 6Zhang Y, Glass J R. Unsupervised spoken keyword spotting via segmental DTW on Gaussian posteriorgrams [ C ]. Automatic Speech Recognition & Understanding, ASRU 2009. IEEE Workshop on. IEEE,2009:398-403.
  • 7Candan K S, Rossini R,Wang X,et al. sDTW: computing DTW distances using locally relevant constraints based on salient feature alignments [ J ]. International Conference on Very Large Data Bases (VLDB) Endowment,2012,5(11) ; 1519-1530.
  • 8Gawali B W,Gaikwad S,Yannawar P,et al. Marathi isolated word recognition system using MFCC and DTW features [ J ]. ACEEE International Journal on Information Technology ,2011,1 (1) ;21 -24.
  • 9Dahl G E, Yu D,Deng L,et al. Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition [ J ]. Audi0, Speech, and Language Processing, IEEE Transactions on,2012, 20(1) :30-42.
  • 10Yu D,Seltzer M L. Improved bottleneck features using pretrained deep neural networks[C]. 12th Annual Conference of the International Speech Communication Association ( INTERSPEECH ), Florence, Italy,2011:237-240.

同被引文献5

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部