期刊文献+

多特征融合的AdaBoost快速训练人脸检测算法 被引量:1

Ada Boost Fast Training Algorithm Based on Multi-feature Fusion for Face Detection
下载PDF
导出
摘要 为了提高人脸检测分类器的训练速度及人脸检测的速度与性能,提出一种基于多特征融合的AdaBoost快速训练人脸检测算法.首先介绍三种特征:Haar-like特征、三角积分特征、基于形态学梯度的边缘方位场特征.接着,给出多特征相融合的AdaBoost快速训练人脸检测算法.实验结果表明提出的算法可以减少人脸检测分类器的训练时间,能够提高人脸检测的速度和性能. To improve the training speed of classifier and the speed and performance of face detection, the AdaBoost fast training algo-rithm based on multi-feature fusion is proposed in this paper. Firstly,the Haar-like features,the triangular integral features and theedge-orientation field features based on morphological gradient are introduced. Then, the AdaBoost fast training algorithm based on theabove three kinds of features is proposed. The results of the experiment show that the proposed algorithm could reduce training time ofclassifier and improve the speed and performance of face detection effectively.
出处 《小型微型计算机系统》 CSCD 北大核心 2015年第7期1613-1616,共4页 Journal of Chinese Computer Systems
基金 辽宁省教育厅科学技术研究项目(L2011092)资助 住房和城乡建设部2012年科学技术计划项目(2012-K8-29)资助
关键词 人脸检测 多特征融合 快速训练 ADABOOST face detection multi-feature fusion fast training AdaBoost
  • 相关文献

参考文献3

二级参考文献63

  • 1Craw I, Ellis H, Lishman J. Automatic extraction of face features. Pattern Recognition Letters, 1987, 5(2):183-187
  • 2Yang G Z, Huang T S. Human face detection in a complex background. Pattern Recognition, 1994, 27(1):53-63
  • 3Dai Y, Nakano Y. Face-texture model based on SGLD and its application in face detection in a color scene. Pattern Recognition, 1996, 29(6):1007-1017
  • 4Kouzani A Z, He F, Sammut K. Commonsense knowledge-based face detection. In: Proc Conference on Intelligent Engineering Systems, Budapast, Hungary, 1997. 215-220
  • 5Garcia C, Tziritas G. Face detection using quantized skin color regions merging and wavelet packet analysis. IEEE Trans Multimedia, 1999, 1(3):264-277
  • 6Sun Q B, Huang W M, Wu J K. Face detection based on color and local symmetry information. In: Proc Conference Automatic Face and Gesture Recognition, Nara, Japan, 1998. 130-135
  • 7Kim S H, Kim H G. Face detection using multi-modal information. In: Proc Conference on Automatic Face and Gesture Recognition, Grenoble, France, 2000. 70-76
  • 8Govindaraju V, Srihari S N, Sher D B. A computational model for face location. In: Proc IEEE Conference on Computer Vision, Osaka, Japan, 1990. 718-721
  • 9Lam K M. A fast approach for detecting human faces in a complex background. In: Proc Symposium on Circuits and Systems, Monterey, 1998, 4:85-88
  • 10Yow K C, Cipolla R. A probabilistic framework for perceptual grouping of features for human face detection. In: Proc Conference on Automatic Face and Gesture Recognition, Killington, Vermont, USA, 1996. 16-21

共引文献365

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部