期刊文献+

基于图像非局部自相似性与分类字典学习的超分辨率重建算法 被引量:4

Image Super-resolution Reconstruction Algorithms Based on Nonlocal Self-similarities and Classification Dictionaries Learning
下载PDF
导出
摘要 提出一种新的图像稀疏表示方法,该方法自适应地利用图像的局部与非局部冗余信息,根据图像的非局部自相似性,构造出一个非局部自回归模型,将其作为数值保真项.利用主成分分析方法及高分辨率的样本图像块学习构建紧凑的分类字典,通过限制迭代次数用以减少字典训练的计算量,同时字典在稀疏域中能够自适应选取.实验结果表明,与其他几种基于学习的算法比较,本文算法无论是在峰值信噪比、结构相似性上还是主观视觉效果上都有显著提高. In this paper,we propose a novel image sparse representation method which exploits adaptively the local and nonlocal redundancies of the image. According to the nonlocal self-similarity of the image,a nonlocal autoregressive model is proposed and taken as the data fidelity term in sparse representation. The principal component analysis( PCA) technique and high-quality example image patches learning are used to construct the classification dictionaries. We update the dictionaries in several iterations to reduce computational cost. At the same time,the dictionaries are selected in sparse domain adaptively. Extensive experiments on single image validate that the proposed method,compared with several other state-of-the-art learning based algorithms,achieves much better results in terms of both peak signal-to-noise ratio( PSNR) and structural similarity( SSIM) and subjective visual perception.
出处 《小型微型计算机系统》 CSCD 北大核心 2015年第7期1617-1619,共3页 Journal of Chinese Computer Systems
关键词 稀疏表示 非局部自相似性 分类字典 非局部自回归模型 sparse representation nonlocal self-similarities classification dictionaries nonlocal autoregressive model
  • 相关文献

参考文献6

  • 1Yang J, Wright J, Huang T S, et al. Image super-resolution viasparse representation[ J]. Image Processing,IEEE Transactions on, 2010,19(11) ;2861-2873.
  • 2Zeyde R,Elad M.Protter M. On single image scale-up using sparse-representations [M], Curves and Surfaces, Springer Berlin Heidelberg ,2012:711-730.
  • 3Dong W,Zhang D,et al. Image deblurring and super-resolution by a-daptive sparse domain selection and adaptive regularization [ J ], Image Processing,IEEE Transactions on,2011,20(7) : 1838-1857.
  • 4Tropp J A, Wright S J. Computational methods for sparse solution of linear inverse problems[ J]. Proceedings of the IEEE,2010,98 (6) ;948-958.
  • 5Chartrand R,Yin W. Iteratively reweighted algorithms for compressive sensing[C]. Proceedings of the IEEE International Conference on Acoustics,Speech and Signal Processing,2008 ;3869-3872.
  • 6Lin Z.Chen M,Wu L,et al. The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices [ D ]. U-niversity of Illinois at Urbana-Champaign ,2009.

同被引文献25

  • 1Shang L,Zhou Y,Su P U.Super-resolution restoration of MMW image based on sparse representation method[J].Neurocomputing,2014,137(5):79-88.
  • 2Li Lin,Xie Yuan,Hu Wenrui,et al.Single image superresolution using combined total variation regularization by split Bregman Iteration[J].Neurocomputing,2014,142:551-560.
  • 3Guo K,Yang X,Zha H,et al.Multiscale semilocal interpolation with antialiasing[J].IEEE Transactions on Image Processing,2012,21(2):615.
  • 4Park S C,Park M K,Kang M G.Super-resolution image reconstruction:a technical overview[J].IEEE Signal Processing Magazine,IEEE,2003,20(3):21-36.
  • 5Keren D,Peleg S,Brada R.Image sequence enhancement using subpixel displacements[C]//IEEE Conference on Computer Vision and Pattern Recongnition,1988:742-746.
  • 6Tsai C J,Galatsanos N P,Katsaggelos A K.Optical flow estimation from noisy data using differential techniques[C]//IEEE International Conference on Acoustics,Speech,and Signal Processing,1999,6:3393-3396.
  • 7Takeda H,Farsiu S,Milanfar P.Kernel regression for image processing and reconstruction[J].IEEE Transactions on Image Processing,2007,16(2):349-366.
  • 8Wand M P,Jones M C.Monographs on Statistics and Applied Probability:Kernel Smoothing[M].New York:Chapman and Hall,1995.
  • 9王春霞,苏红旗,范郭亮.图像超分辨率重建技术综述[J].计算机技术与发展,2011,21(5):124-127. 被引量:18
  • 10万雪芬,杨义,崔剑.图像超分辨率重建处理算法研究[J].激光与红外,2011,41(11):1278-1281. 被引量:8

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部