期刊文献+

基于图像频谱全局均值标准差分割的点扩散函数估计 被引量:2

Algorithm of global mean and standard deviation for motion blur parameters identification
下载PDF
导出
摘要 实现运动模糊图像恢复的关键是获得准确的点扩散函数(point spread function,PSF)。针对PSF的模糊尺度和模糊方向这两个重要参数,提出了一种基于图像频谱全局均值标准差的估计方法。通过研究运动模糊图像的产生机理,分析了二次傅里叶变换的频谱特性,利用全局均值标准差法对频谱图进行阈值分割,结合中心点和端点的坐标距离来估计模糊尺度,运用Radon变换鉴别模糊方向,实现了PSF参数的确定。进行了标准图像阈值分割准确度的验证,利用仿真模糊图像估计算法进行了验证,并进行了实际复原实验。结果表明,该方法具有误差小、稳定性高和不受运动方向限制的特点,为图像恢复提供了一种准确、简便的参数估计方法。 The estimation of parameters for motion blurred images is dealed with. The objectives are to estimate the length and the blur angle of the given degraded image as accurately as possible so that the restoration performance can be optimized. An algorithm of global mean and standard deviation for motion blur parameters identification is proposed. Radon transform is utilized to estimate the blur angle where as a trained the pixel coordinates estimates the blur length. Once these parameters are estimated the conventional restoration is performed. To validate the proposed scheme, simula- tion has been carried out on standard images as well as in real images subjected to different blur lengths. In all situations, the results have been compared with standard schemes. It is in general observed that the proposed scheme out performs its counterparts in terms of restoration parameters and visual quality.
出处 《光学技术》 CAS CSCD 北大核心 2015年第4期341-345,350,共6页 Optical Technique
关键词 阈值分割 全局均值标准差 点扩散函数 运动模糊 threshold segmentation global mean and standard deviation point spread function motion blur
  • 相关文献

参考文献12

二级参考文献58

  • 1陈前荣,陆启生,成礼智.基于方向微分的运动模糊方向鉴别[J].中国图象图形学报(A辑),2005,10(5):590-595. 被引量:41
  • 2孙辉,张葆,刘晶红.基于维纳滤波的运动模糊消除算法及其在航空成像系统中的应用[J].光学精密工程,2005,13(6):735-740. 被引量:19
  • 3贾平,张葆,孙辉.航空成像像移模糊恢复技术[J].光学精密工程,2006,14(4):697-703. 被引量:39
  • 4刘微.运动模糊图像恢复算法的研究与实现[D].长春:中国科学院长春光学精密机械与物理研究所,2005.
  • 5A1 Maki W F, Shimahashi T, Matsubara M, et al. PSF estimation and image restoration for noiseless motion blurred images [ C ]//Proceedings of the 7th WSEAS International Conference on Signal, Speech and Image Processing. Wisconsin, USA:WSEAS, 2007:1-7.
  • 6Chen Li, Yap Kim hui. Efficient discrete spatial techniques for blur support identification in blind image deconvolution [ J ]. IEEE Trans. Signal Processing, 2006, 54 (4) : 1557-1562.
  • 7Yitzhaky Y, Kopeika N S. Identification of blur parameters from motion blurred images [ J ]. Graphical Models and Image Processing, 1997,59 (5) :310 - 320.
  • 8Krahmer F, Lin Y, MeAdoo B, et al. Blind image deconvolution : motion blur estimation[ EB/OL]. (2006-08-18) [2009-01-301 .http://www. ima. umn. edu.
  • 9Wu Shiqian," Lin Weisi, Xie Shoulie, et al. Blind blur assessment for vision-based applications [ J]. Journal of Visual Communication and Image Representation, 2009, 20 ( 4 ) :231- 241.
  • 10Cannon M. Blind deennvolution of spatially invariant image blurs with phase [ J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1976, 24( 1): 58-63.

共引文献103

同被引文献34

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部