期刊文献+

一种基于最优非线性滤波的红外弱目标检测前跟踪算法研究 被引量:1

A novel track-before-detect algorithm based on optimal nonlinear filtering for detecting and tracking infrared dim target
下载PDF
导出
摘要 针对目标在真实红外场景图像中的非线性、非高斯特性,从非线性理论出发构建状态和观测模型,提出了一种基于最优非线性滤波算法的红外弱小目标检测前跟踪算法。采用基于谱分离思想的Wiener混沌展开方法对构建的随机微分方程进行求解,并将算法结构分为两部分:一部分与观测数据无关且耗时的计算放在观测前期完成;另一部分是与观测数据有关的实时快速计算放在后续执行,以提高运算效率。仿真结果表明,该算法在低信噪比红外目标检测中表现出了良好的检测性能,更适合实时应用。 Aiming at the nonlinear and non-Gaussian features of the real infrared scenes, an optimal nonlinear filtering based on algorithm is proposed for the infrared dim target tracking-before-detecting application. It uses the nonlinear theory to construct the state and observation models and uses the spectral, separation scheme based on Wiener chaos expansion method to resolve the stochastic differential equation of the constructed models. In order to improve computation ef- ficiency, the most time-consuming operations independent of observation data are processed on the fore observation stage. The other observation data related rapid computations are implemented subsequently. Simulation results show that this algorithm possesses excellent detection performance and is more suitable for real-time processing.
出处 《光学技术》 CAS CSCD 北大核心 2015年第4期369-372,376,共5页 Optical Technique
基金 国家自然科学基金资助项目(61340018 61271427) 北京市自然科学基金资助项目(4152045)
关键词 最优非线性滤波 检测前跟踪 Wiener混沌多项式 谱分解格式 optimal nonlinear filtering tack-before-detect Wiener chaos decomposition spectral separation scheme
  • 相关文献

参考文献15

  • 1Reed I S, Gagliardi R M. Shao H M. Application of three-di- mensional t-iltering to moving target detection ~j~. IEEE Trans- actions on Aerospace and Electrical Systems, 1983, 19 (6)= 898--905.
  • 2Barniv Y. Dynamic programming solution for detecting dim moving targets [J]. IEEE Transactions on Aerospace and Elec- triea[Systems, 1985, 21(1): 144 156.
  • 3Carlson B D, Evans E D ,Wilson S I: Search radar detection and tracking with the Hough transform. Part l: System concept [J] . IEEE Transactions on Aerospace and Electronic System, 1994, 30(1): 102--108.
  • 4Rollason M. Samond D J. A particle filter for track-before-de- tect of a target with unknown amplitude[J]. IEEE Seminar on Target Tracking: Algorithms and Applications, 2001,14 ( 1 ) : 1-4.
  • 5Arulampalam M S, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear nan-Gaussian Bayesian track- ing[J]. IEEE Transactions on Signal Processing, 2002, 50(2) : 174--188.
  • 6Lototsky S V, Rao C, Rozovskii B L. Fast nonlinear filter for continuous-discrete time multiplication models[C]//Proc. 35th Conf. Decision and Control. Kobe, Japan, 1996, 4: 4060-- 4064.
  • 7Lototsky S V, Rozovskii B I: From stochastic calculus to math- ematical finance [M]. Berlin: Springer Science ~- Business Media, 2006.
  • 8Rozovskii B I: Stochastic evolution systems[M]. Boston: Klu- wer Academic Publishers, 1990.
  • 9Jazwinski A H. Stochastic processes and filtering theory [M]. New York: Academic Press, 1970.
  • 10Bennaton J F. Discrete time Galerkin approximation to the nonlinear filtering solution [J]. Malh. Anal. Appl. 1985, 110 (2): 364--383.

二级参考文献12

  • 1张惠娟,梁彦,程咏梅,潘泉,张洪才.运动弱小目标先跟踪后检测技术的研究进展[J].红外技术,2006,28(7):423-430. 被引量:26
  • 2曲长文,黄勇,苏峰.基于动态规划的多目标检测前跟踪算法[J].电子学报,2006,34(12):2138-2141. 被引量:27
  • 3Hadzagic M, Michalska H, Lefebvre E. Track-before-detect methods in tracking low-observable targets: a survey [J]. Sensors & Transducers Magazine (S&T e-Digest), Special Issue, August 2005: 374-380.
  • 4Blackman S, Popoli R. Design and analysis of modem Tracking Systems [M]. New York, USA: Artech House Publishers, 1999, Ch. 17: Detection and tracking of dim targets in Clutter.
  • 5Ristic R, Arulampalam S, Gordon N. Beyond the Kalman filter- particle filters for tracking applications [M]. Boston - London: Artech House 2004, Ch. 11 : Detection and tracking of stealthy targets.
  • 6Boers Y, Driessen H. Particle filter based track before detect algorithms [C]// Signal and Data Processing of Small Targets of SPIE, San Diego, CA, USA, 2003, 5204: 20-30.
  • 7Salmond D J, Birch H. A particle filter for track-before-detect [C]//. Proceedings of the American Control Conference, Arlington, VA, USA, June 25-27, 2001: 3755-3760.
  • 8Rutten M G, Gordon N J, Maskell S. Particle-based track-before- detect in Rayleigh noise [C]// Signal and Data Processing of Small Targets of SPIE, Orlando, FL, USA, 2004, 5428:509-519.
  • 9Boers Y, Driessen H. Multitarget particle filter track before detect application [J]. IEE Proc.-Radar Sonar Navig., 2004,151(6): 351-357.
  • 10Torstensson J, Trieb M. Particle filtering for track before detect applications [D]. Sweden: Division of Automatic Control Department of Electrical Engineering, Linkoping University, 2005.

共引文献4

同被引文献14

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部