期刊文献+

基于身份的同态加密

Identity-based homomorphic encryption scheme
下载PDF
导出
摘要 目的提出一种格上的基于身份的同态加密方案。方法利用格上的LWE(learning with error)难题将身份信息加入参数的设置,选取加密所用的密钥,以LWE加密算法,身份加密算法以及同态加法的要求为基础。结果利用该密钥加密的输出结果满足同态加法,证明了方案的正确性和在适应性选择身份和选择明文攻击下(IND-ID-CPA)的安全性。结论方案可以抵抗量子计算的攻击,密钥短,便于密钥的管理,可以直接对加密信息进行处理。 Objective--To propose a homomorphic encryption scheme based on Identity. Metnoas-- The LWE difficult problem on lattice add the identity information to the parameter settings when se- lect. Results--The outputs meet homomorphic addition prove the correctness and security of the scheme under IND-ID-CPA. Conclusion--The scheme can resist the attacks from quantum computing, and the keys are shorter. It is easy to manage the keys and can without.
作者 邓银娟
出处 《宝鸡文理学院学报(自然科学版)》 CAS 2015年第2期25-30,共6页 Journal of Baoji University of Arts and Sciences(Natural Science Edition)
基金 国家自然基金项目(No.61402015) 宝鸡文理学院硕士科研启动项目(No.ZK14061)
关键词 LWE算法 身份 同态加密 lattice LWE algorithm identity homomorphic encryption
  • 相关文献

参考文献11

  • 1SHAMIR A. Identity-Based Cryptosystems and Signature Scheme[C]//Advances in Cryptology, Lecture Notes in Computer Science. Heidelberg: Heidelberg, 1985.. 47-53.
  • 2REGEV O. On lattices, Learning with errors, random linear codes, and cryptography[C]//In Proc. 37 th ACM on the Theory of Computing(STOC), Z005: 84-93.
  • 3LYUBASHEVSKY V, PEIKERT C, REGEV O. On ideal lattice and learning with errors over rings[C]//Leeture Notes in Computer Science, Advances in Cryptology - EUROCRYPT, 2010: 1-23.
  • 4夏峰,杨波,张明武,马莎,雷涛.基于LWE的集合相交和相等的两方保密计算[J].电子与信息学报,2012,34(2):462-467. 被引量:13
  • 5GENTRY C. Fully homomorphie eneryption using ideal lattice[C]. STOC 2009, New York.. ACM, 2009: 169-178.
  • 6BRAKERSKI Z, VAIKUNTANAATHAN V. Efficient Fully homomorphic Encryption from (Standard) LWE[CJ//IEEE 52nd Annual Symposium on Foundations of Computer Science, New York: ACM, 2011: 22-25.
  • 7MICCIANCIO D , REGEV O. Lattice-based cryptography[C]//Post Quantum Cryptography, Heidelberg: Springer, 2009: 147-191.
  • 8王小云,刘明洁.格密码学研究[J].密码学报,2014,1(1):13-27. 被引量:45
  • 9Brent Waters. Efficient identity-based encryption without random oracles[-C]//Advances in Cryptology EUROCRYPT 2005. Lecture Notes in Computer Science, 2005, 3494:114-127.
  • 10杨晓元,吴立强,张敏情,张薇.基于R-LWE的公钥加密方案[J].通信学报,2013,34(2):23-30. 被引量:6

二级参考文献57

  • 1Yao A C. Protocols for secure computations [C]. The 23rd IEEE Symposium on Foundations of Computer Science, Piscataway, USA, IEEE, 1982: 160-164.
  • 2Goldreich O, Micali S, and Wigderson A. How to play ANY mental game[C]. The 19th Annual ACM Conference on Theory of Computing, New York, 1987: 218-229.
  • 3Goldreich O. Foundations of Cryptography: Basic Applications[M]. London: Cambridge University Press, 2004: 599-729.
  • 4Dachman-Soled D, Malkin T, Raykova M, et al. Efficient robust private set intersection [C]. ACNS '09, 2009, LNCS, 5536: 125-142.
  • 5Shor P W. .Polynomial-time algorithm for prime factorizeation and discrete logarithm on a quantum computer [J]. SIAM Journal on Computing, 1997, 26(5): 1484-1509.
  • 6Gentry C, Peikert C, and Vaikuntanathan V. Trapdoors for hard lattices and new cryptographic constructions[C]. STOC'08, Victoria, BC, Canada, ACM, 2008: 197-206.
  • 7Regev O. On lattices, learning with errors, random linear codes, and cryptography[J]. Journal of the A CM, 2009, 56(6): 1-40.
  • 8Peikert C. Public-key cryptosystems from the worst-case shortest vector problem[C]. STOC'09, Maryland, USA, ACM 2009:333 342.
  • 9David C, Dennis H, Eike K, et al. Bonsai trees, or how to delegate a lattice basis [C]. EUROCRYPT'2010, 2010, LNCS, 6110: 523-552.
  • 10Lyubashevsky V, Peikert C, and Regev O. On ideal lattices and learning with errors over rings[C]. EUROCRYPT'2010, 2010, LNCS, 6110: 1-23.

共引文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部