期刊文献+

结合排序向量SVM的视频跟踪 被引量:1

Visual tracking combined with ranking vector SVM
下载PDF
导出
摘要 针对真实视频场景中复杂的目标外观变化问题,提出新的结合排序向量SVM(RV-SVM)的单目标视频跟踪算法.基于压缩感知理论,利用稀疏测量矩阵压缩多尺度图像特征.采用Median-Flow跟踪算法作为预测器,并为RV-SVM构建训练数据集,使算法能够适应真实场景中遇到的目标遮挡、3D旋转和目标快速移动等复杂情况.通过在线学习RV-SVM算法,对候选位置集进行排序,找到目标的真实位置.对不同视频序列的测试结果表明:该方法可以在目标运动、旋转以及光照和尺度发生变化的情况下实现准确的跟踪. A novel single object video tracking algorithm with ranking vector SVM (RV-SVM) was proposed for complex changes of object appearance in realistic scenarios. A sparse measurement matrix based on compressive sensing theory could compress the multi-scale image features. A Median-Flow tracker algorithm was used as a predictor and to construct training data sets for RV-SVM algorithm, so that the algorithm could adapt complex conditions like object occlusion, 3D rotation and fast object motion. The real position of target was determined through training the RV-SVM algorithm online and ranking the candidate position set. Results of tests on variant video sequences show that the algorithm can achieve stable tracking either the object is moving, rotating or the illumination and scale is changing.
作者 于慧敏 曾雄
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2015年第6期1015-1021,共7页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(61471321) 国家"973"重点基础研究发展规划资助项目(2012CB316400) 中兴通讯资助项目
关键词 视频跟踪 压缩感知 Median-Flow跟踪 排序向量SVM(RV-SVM) visual tracking compressive sensing Median-Flow tracker ranking vector SVM (RV-SVM)
  • 相关文献

参考文献23

  • 1GRABNER H, GRABNER M, BISCHOF H. Real-time tracking via on-line boosting [C] // Proceedings of British Machine Vision Conference. Edinburgh: BMVC, 2006, 1(5): 6.
  • 2GRABNER H, LEISTNER C, BISCHOF H. Semi-supervised on-line boosting for robust tracking [M]//Proceedings of European Conference on Computer Vision. Berlin Heidelberg: Springer, 2008: 234-247.
  • 3ZHANG K, ZHANG L, YANG M H. Real-time compressive tracking [M]//Proceedings of European Conference on Computer Vision. Berlin Heidelberg: Springer, 2012: 864-877.
  • 4ZHANG K, SONG H. Real-time visual tracking via online weighted multiple instance learning [J]. Pattern Recognition, 2013, 46(1): 397-411.
  • 5BABENKO B, YANG M H, BELONGIE S. Robust object tracking with online multiple instance learning [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1619-1632.
  • 6SANTNER J, LEISTNER C, SAFFARI A, et al. PROST: parallel robust online simple tracking [C] // Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. San Francisco: IEEE, 2010: 723-730.
  • 7BAI Y, TANG M. Robust visual tracking with ranking SVM [C]//Proceedings of IEEE Conference on Image Processing. Brussels: IEEE, 2011: 517-520.
  • 8COMANICIU D, RAMESH V, MEER P. Real-time tracking of non-rigid objects using mean shift [C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head: IEEE, 2000, 2: 142-149.
  • 9MEI X, LING H. Robust visual tracking and vehicle classification via sparse representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(11): 2259-2272.
  • 10ADAM A, RIVLIN E, SHIMSHONI I. Robust fragments-based tracking using the integral histogram [C] // Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2006: 798-805.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部