期刊文献+

聚类分片双支持向量域分类器 被引量:3

Clustering piecewise double support vector domain classifier
原文传递
导出
摘要 针对支持向量域分类器对大规模样本集的训练时间长且占用内存大的问题,构造聚类分片双支持向量域分类器.以均值聚类剖分原始空间,并选取密度指标大的样本作为初始聚类中心;对子空间构造双支持向量域分类器,根据样本与正负类最小包围超球的距离构造分段决策函数;定义样本的变尺度距离,以链接规则组合子空间的分类结果.数值实验表明,所提出算法的分类精度高且受参数变化的影响不大,分类时间短且随子空间数的增加而降低. Support vector domain classifiers have disadvantages like long training time and large memory. The clustering piecewise double support vector domain classifier(CPDSVDC) is proposed. CPDSVDC uses C means algorithm to partition the original space, and selects the initial cluster centers by samples with large density indexes. The dual support vector domain classifier is constructed in each divided subspace, and the corresponding piecewise decision function is also constructed based on the position relationship between the test sample and the two minimum enclosing spheres. The variable distance of the test sample is defined, and linking rule is used to combine classification results in all subspaces. Numerical experiments demonstrate that the CPDSVDC has high classification accuracy that varies slightly with parameters and low training time that decreases with the number of subspaces.
作者 梁锦锦 吴德
出处 《控制与决策》 EI CSCD 北大核心 2015年第7期1298-1302,共5页 Control and Decision
基金 国家自然科学基金项目(61373174)
关键词 支持向量域分类 分段识别 聚类 密度指标 双支持向量域分类器 变尺度距离 support vector domain classifier piecewise identification clustering density indexes double support vector domain classifier variable distance
  • 相关文献

参考文献13

  • 1Tax D M J, Duin R P W. Support vector data description[J]. Machine Learning, 2004, 54(1): 45-66.
  • 2Zhao Yang, Wang Shengwei, Xiao Fu. Pattern recognition- based chillers fault detection method using support vector data description(SVDD)[J]. Applied Energy, 2013, 112(1): 1041-1048.
  • 3Niazmardi Saeid, Homayouni Saeid, Safari Abdolreza. An improved FCM algorithm based on the svdd for unsupervised hyperspectral data classification[J]. IEEE J of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(2): 831-839.
  • 4Lan Jingchuan. Research on the fast ICA and SVDD based fault feature extraction algorithm for analog circuit[J]. Int J of Digital Content Technology and Its Applications, 2012, 6(6): 107-115.
  • 5陆从德,张太镒,胡金燕.基于乘性规则的支持向量域分类器[J].计算机学报,2004,27(5):690-694. 被引量:21
  • 6梁锦锦,刘三阳,吴德.空间支持向量域分类器[J].西安电子科技大学学报,2008,35(6):1080-1083. 被引量:8
  • 7刘富,侯涛,刘云,张潇.可变惩罚因子的支持向量数据描述算法[J].吉林大学学报(工学版),2014,44(2):440-445. 被引量:3
  • 8吴德,刘三阳.支持向量域多分类器[J].西安交通大学学报,2012,46(6):87-91. 被引量:6
  • 9Zhao Feng, Yan Liu, Zhen Hua, et al. Simplified solution for support vector domain description[J]. Int J of Digital Content Technology and Its Applications, 2011, 5(2): 292- 299.
  • 10Liu Sanyang,Liang Jinjin,Wu De,Duan Wei.Confidence support vector domain description[J].Journal of Systems Engineering and Electronics,2009,20(4):852-857. 被引量:2

二级参考文献51

  • 1陆从德,张太镒,胡金燕.基于乘性规则的支持向量域分类器[J].计算机学报,2004,27(5):690-694. 被引量:21
  • 2李青,焦李成,周伟达.基于向量投影的支撑向量预选取[J].计算机学报,2005,28(2):145-152. 被引量:37
  • 3杨晓元,王志刚,王育民.支持向量机在图像隐秘检测中的应用[J].西安电子科技大学学报,2005,32(3):457-459. 被引量:3
  • 4唐发明,王仲东,陈绵云.支持向量机多类分类算法研究[J].控制与决策,2005,20(7):746-749. 被引量:90
  • 5Cristianini N, Taylor J S. An Introduction to Support Vector Machines [M]. Cambridge.. Cambridge Univ Press, 2000.
  • 6Vapnik V N. An Overview of Statistical Learning Theory[J]. IEEE Trans on NN,1999, 10(5) : 988-999.
  • 7Tax D M J. One-class Classification.. Concept-learning in the Absence of Counter-examples [D]. Netherlands: Delft Univ, 2001.
  • 8Tax D M J, Duin R P W. Support Vector Data Description [J]. Mach Learn, 2004, 54.. 45-66.
  • 9Chapelle O, Vapnik V, Bacsquest et al. Choosing multiple parameters for support vector machines. Machine Learning, 2002, 46(1) : 131-159
  • 10Ayat N E, Cheriet M, Remaki Let al. KOMD--A new support vector machine kernel with moderate decreasing for pattern recognition, application to digit image reeognition//Proceedings of the 6th International Conferemee on Document Analysis and Recognition. Seattle, USA, IEEE, 2001: 1215-1221

共引文献59

同被引文献19

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部