期刊文献+

线性微分博弈系统的识别域判别 被引量:1

Determining discriminating domain for linear differential games
原文传递
导出
摘要 针对一般非线性系统识别域的判别定理难以被具体应用这一现象,利用非光滑分析理论,研究线性微分博弈系统的一个有界识别域问题,即如果一个闭集是识别域,则此集合的凸包也是识别域,从而得到一个多面体识别域.提出了该问题的一种有效算法,该算法简便易行,利用转换定理即可得到系统的胜利域.最后通过算例验证了所提出算法的可行性和有效性. Aimming at the phenomenon that the discriminating theorem of discriminating domain of the general nonlinear system is difficult to be used, a bounded discriminating domain for linear pursuit-evasion differential games is studied. If a closed set is a discriminating domain of the differential games, the convex hull of the set is also a discriminating domain of the differential games. A polyhedral discriminating domain is obtained, and an efficient algorithm is given, which is easy to be used. By using the alternative theorem, the victory domain of the differential games can be obtained. An example is given to show the feasibility and effectiveness of the proposed algorithm.
作者 韩艳丽 高岩
出处 《控制与决策》 EI CSCD 北大核心 2015年第7期1329-1332,共4页 Control and Decision
基金 国家自然科学基金项目(11171221) 教育部博士点基金项目(20123120110004) 上海市一流学科项目(XTKX2012) 上海市自然科学基金项目(14ZR1429200)
关键词 博弈论 微分博弈 识别域 非光滑分析 game theory differential games discriminating domain nonsmooth analysis
  • 相关文献

参考文献18

  • 1Krasovskii N N, Subbotin A I. Game theoretical control problems[M]. New York: Springer-Verlag, 1988: 70-81.
  • 2Krasovskii N N, Subbotin A I. Universal optimal strategies in positional differential games[J]. Differential Equation, 1984, 19(11): 1377-1382.
  • 3Cardaliaguet P. Differential game with two players and one target[J]. SIAM J on Control and Optimization, 1996, 34(4): 1441-1460.
  • 4Cardallaguet P, Quincampoix M, Saint-pierre P. Some algorithms for differential game with two-players and one target[J]. Mathematical Modeling and Numerical Analysis, 1994, 28(4): 441-461.
  • 5CardaUaguet P, Quincampoix M, Saint-pierre P. Some algorithms for differential game with two-players and onetarget[J]. Mathematical Modeling and Numerical Analysis, 1994, 28(4): 441-461.
  • 6Cardallaguet P, Quincampoix M, Saint-pierre P. Pursuit differential games with state constraints[J]. SIAM J on Control and Optimization, 2002, 39(5): 1615-1632.
  • 7Gao Y, Lggeros J, Quincampoix M. On the reachability problem of uncertain hybrid systems[J]. IEEE Trans on Automatic Control, 2007, 52(9): 1572-1586.
  • 8张霞,高岩,夏尊铨.追捕逃逸型微分对策问题的识别域判别[J].上海理工大学学报,2012,34(5):452-455. 被引量:3
  • 9Nikolai B, Varvara T. Numerical construction of viable sets for autonomous conflict control systems[J]. Mathematics, 2014, 2(2): 68-82.
  • 10Aubin J P. Viability theory[M]. Boston: Birkhauser, 1991: 43-101.

二级参考文献32

共引文献32

同被引文献10

  • 1朱怀念,植璟涵,张成科,宾宁.带Markov切换参数的线性二次零和随机微分博弈[J].系统科学与数学,2013,33(12):1391-1403. 被引量:2
  • 2BENCHEKROUN H,LONG N V. Efficiency-inducing taxation for polluting oligopolists[J]. Journal of Public Economics, 1998, 70(2) :325-342.
  • 3RUBIO S J,ESCRICHE L. Strategic pigouvian taxation,stock externalities and polluting non-renewable resources[J].Journal of Public Economics,2001,79:297-313.
  • 4YANASE A.Dynamic games of environmental policy in a global economy:Taxes versus quotas[Jl.Review of International Economics, 2007,15 (3) : 592-611.
  • 5GERMAIN M,STEENBERGHE Y V. Constraining equitable allocations of tradable CO2 emission quotas by acceptability [J ]. Environmental and Resource Economics,2003,26 (3) :469- 492.
  • 6BERNARD A,HAURIE A,VIELLE M,et al. A two-level dy- namic game of carbon emission trading between Russia,Chi- na, and annex B countries[J]. Journal of Economic Dynamics & Control,2008,32(6) : 1830-1856.
  • 7RUBIO S,CASINO B. Self-enforcing international environmen- tal agreements with a stock pollutant[J]. Spanish Economic Review, 2005,7 ( 2 ) : 89-109.
  • 8FERNANDEZ L. Trade's dynamic solutions to trans boundary pollution[J].Journal of Environmental Economics and Manage- ment, 2002,43 (3) : 386-411.
  • 9朱怀念,张成科,李云龙,杨超进.一类不定仿线性二次型随机微分博弈的鞍点均衡策略[J].广东工业大学学报,2012,29(3):35-38. 被引量:4
  • 10郭冬梅,井帅,汪寿阳.带跳的分数倒向重随机微分方程及相应的随机积分偏微分方程[J].中国科学:数学,2014,44(1):73-87. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部