期刊文献+

几个针对FitzHugh-Nagumo方程的有限差分解法

Several Finite Difference Schemes to Solve FitzHugh-Nagumo Equations
下载PDF
导出
摘要 采用隐式差分格式和Crank-Nicolson格式求解FitzHugh-Nagumo方程。通过对FitzHugh-Nagumo方程的非线性反应项的线性化处理,在两种格式下各自给出了三种算法,并对各种算法的误差和收敛阶进行了分析比较。数值实验验证了算法的有效性。 Implicit finite difference scheme and Crank-Nicolson scheme are used to solve FitzHugh-Nagumo equations.The nonlinear reaction term is linearized in three different ways.Comparison studies of different schemes is conducted.The numerical experiments show the effectiveness of the schemes.
出处 《青岛大学学报(自然科学版)》 CAS 2015年第2期5-10,21,共7页 Journal of Qingdao University(Natural Science Edition)
基金 国家自然科学基金(批准号:11072120)资助 美国自然科学基金(批准号:1217268)资助
关键词 FITZHUGH-NAGUMO方程 隐式差分格式 CRANK-NICOLSON格式 收敛阶 FitzHugh-Nagumo equations implicit finite difference scheme Crank-Nicolson scheme convergence rate
  • 相关文献

参考文献14

  • 1Hodgkin A L, Huxley A F. A quantitative description of membrane current and its application to conduction and excitation in nerve [J] The Journal of Physiology, 1952, 117(4) : 500 - 544.
  • 2Richard, Fitzhugh, Impulses and physiological states in theoretical models of nerve membrance[J], Biophysical Journal, 1961, 1 (6) : 445 -466.
  • 3Nagumo J, Arimoto S, Yoshizowa S. Impulses and Physiological States in Theoretical Models of Nerve Membrane[J]. Proceedings of the 1RE, 1962, 50: 2061-2070.
  • 4Casten R G,Cohen H,Lagerstrom P A. Perturbation analysis of an approximation to the Hodgkin-Huxley theory[J]. The Quarterly of Applied Mathematics, 1975, 32:865 - 402.
  • 5Hastings S P. Some Mathematical Problems from Neurobiology[J]. Daniel Olmos, Bernie D. Shizgal. Pseudospectral method of solution Simulation, 2009, 79(7): 2258-2278.
  • 6Daniel Olmos, Bernie D. Shizgal. Pseudospectral method of solution of the Fitzhugh Nagumo equation[J]. Mathematics and Computers in Simulation, 2009, 79(7): 2258-2278.
  • 7Hastings S P. On the existence of homoclinic and periodic orbits for the FitzHugh-Nagumo equations[J]_ ics. 1976, 27(2): 123-134.
  • 8McKean H E, Moll V. Stabilization to the standing wave in a simple caricature of the nerve equation[J]. plied Mathematics. 1986, 39(4) :485 - 529.
  • 9Quarterly Journal of Mathemat Communications on Pure and Ap- Terman D. Threshold phenomena for a reaction-diffusion system[J]. Journal of Differential Equations, 1983, 47(3) :406 - 443.
  • 10Neu John C, R Stephen Preissig, Wanda Krassowska. Initiation of propagation in a one-dimensional excitable medium[J]. Physica D: Nonlinear Phenomena, 1997, 102(3): 285-299.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部