期刊文献+

可压Navier-Stokes-Poisson方程组强解的整体存在性

The Global Existence of the Compressible Navier-Stokes-Poisson Equations
下载PDF
导出
摘要 主要考察了可压NSP方程组强解的整体存在性.由于初始数据属于不同的空间,NSP方程组强解的整体存在性也有所不同. This paper investigates the NSP equations can be pressed in the global existence of strong solution. Because of the initial data belong to different space, the NSP equations of strong global existence of solution is also different.
作者 张美花
出处 《湖南理工学院学报(自然科学版)》 CAS 2015年第2期13-17,共5页 Journal of Hunan Institute of Science and Technology(Natural Sciences)
关键词 NSP方程组 强解 整体存在性 Navier-Stokes-Poisson equations strong solution global existence
  • 相关文献

参考文献3

二级参考文献36

  • 1Degond P. Mathematical modelling of microelectronics semiconductor devices//Some Current Topics on Nonlinear Conservation Laws. AMS/IP Stud Adv Math, 15. Providence, RI: Amer Math Soc, 2000: 77-110.
  • 2Degond P, Jin S, Liu J. Mach-number uniform asymptotic-preserving gauge schemes for compressible flows. Bull Inst Math Acad Sin (N S), 2007, 2(4): 851-892.
  • 3Donatelli D. Local and global existence for the coupled Navier-Stokes-Poisson problem. Quart Appl Math, 2003, 61:345-361.
  • 4Donatelli D, Marcati P. A quasineutral type limit for the Navier-Stokes-Poisson system with large data. Nonlinearity, 2008, 21(1): 135-148.
  • 5Duan R -J, Liu H, Ukai S, Yang T. Optimal L^p - L^q convergence rates for the compressible Navier-Stokes equations with potential force. J Differ Equ, 2007, 238(5): 737- 758.
  • 6Ducomet B, Feireisl E, Petzeltova H, Skraba I S. Global in time weak solution for compressible barotropic self-gravitating fluids. Discrete Continous Dynamical System, 2004, 11(1): 113-130.
  • 7Ducomet B, Zlotnik A. Stabilization and stability for the spherically symmetric Navier-Stokes-Poisson system. Appl Math Lett, 2005, 18(10): 1190-1198.
  • 8Hao C, Li H. Global Existence for compressible Navier-Stokes-Poisson equations in three and higher di- mensions. J Differ Equ, 2009, 246:4791 -4812.
  • 9Hoff D, Zumbrun K. Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow. Indiana Univ Math J, 1995, 44:603-676.
  • 10Ju Q, Li F, Li H -L. The quasineutral limit of Navier-Stokes-Poisson system with heat conductivity and general initial data. J Differ Equ, 2009, 247:203- 224.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部