期刊文献+

两类ω-超广义函数空间的结构表示

Construction Expressions of Two Classes of ω-Ultradistributions
下载PDF
导出
摘要 利用ω-超广义函数空间与某些实解析函数空间之间的拓扑同构对应关系,通过实解析函数空间考察了两类ω-超广义函数空间,给出了RN中开集Ω上由任意的权函数引出的ω-超广义函数E′*(Ω)和由非伪解析的权函数引出的ω-超广义函数D′*(Ω) The constructions of two classes ofω-ultradistributions have been discussed by using topological isomorphism relations betweenω-ultra-distributions and some real-analytic function spaces,and two construction expressions of D′*(Ω)derived by the non-quasianalytic weight function andω-ultra-distributions E′*(Ω)derived by any weight function on the open set in RNare given.
作者 薛琳
出处 《中北大学学报(自然科学版)》 CAS 北大核心 2015年第3期268-271,共4页 Journal of North University of China(Natural Science Edition)
基金 山西省回国留学人员科研资助项目(2012-011)
关键词 权函数 ω-超可微函数 ω-超广义函数 实解析函数空间 weight functions ω-ultra-differentiable functions ω-ultra-distributions real-analytic function spaces
  • 相关文献

参考文献12

  • 1BonetJ, Braun R W, Meise R, et al. Whitney's extension theorem for non-quasianalytic classes of ultradifferentiabl functions[J]. Studia Math., 1991, 99 (2): 155-184.
  • 2BonetJ, Fernandez C, Meise R Characterization of the or hypoelliptic convolution opertiors on ultradistributions[J]. Ann. Acad. Sci. Fenn. Math., 2000 (25): 261-284.
  • 3BonetJ, Meise R Ultradistributions of Beurling type and projective descriptions[J].J. Math. Anal. and Appl. , 2001(255): 122-136.
  • 4BonetJ, Meise R Quasianalytic functional and projective descriptions[J]. Math. Scand., 2004(94): 249- 266.
  • 5Braun R W, Meise R, Taylor B A A characterization of the algebraic surfaces on which the classical Phragmen-L ind elof of theorem holds using branch curvesDJ. Pure Appl, Math. Q., 2011, 7(1): 139- 197.
  • 6Braun R W, Meise R, Taylor B A Ultradifferentiable functions and Fourier analysis[J]. Resulte Math. , 1990(17): 206-237.
  • 7Hormander L. Between distributions and hyperfunctionsD]. Asterisque , 1985(131): 89-106.
  • 8Meise R, Taylor B. A Whitney's extension theorem for ultradifferentiable functions of Beurling type[J]. Ark. Math. , 1988(26): 265-287.
  • 9Heinrich T, Meise R A support theorem for Quasianalytic Iunctionals[J]. Math. Nachr., 2007 (28): 364- 387.
  • 10BonetJ, Meise R On the theorem of Borel for quasianalytic classes[J]. Math. Scand., 2013, 112 (2): 302-319.

二级参考文献21

  • 1Bonet J, Braun R W, Meise R, et al. Whitney's exten- sion theorem for non-quasianalytie classes of ultradifferen- tiablfunetions[J]. Studia Math., 1991, 99(2): 155- 184.
  • 2Bonet J, Fernandez C, Meise R. Characterization of the w-hypoelliptic convolution opertiors on ultradistributions [J]. Ann. Acad. Sci. Fenn. Math., 2000, 25: 261- 284.
  • 3Bonet J, Meise R. Ultradistributions of Beurling type and projective descriptions[J]. J. Math. Anal. and Appl. , 2001, 255: 122-136.
  • 4Bonet J, Meise R. Quasianalytic functional and projective descriptions[J]. Math. Scand. , 2004, 94~ 249-266.
  • 5Braun R W, Meise R, Taylor B A. Ultradifferentiable functions and Fourier analysis[J]. Resulte Math. , 1990, 17 : 206-237.
  • 6Hormander L. Cetween distributions and hyperfunctions [J]. Asterisque, 1985, 131: 89-106.
  • 7Meise R, Taylor B A. Whitney' s extension theorem for ultradifferentiable functions of Beurling type [ J ]. Ark. Math., 1988, 26: 265-287.
  • 8Schapira P. Theorie des Hyperfonctions [ M ]. Springer LNM, 1970: 126.
  • 9Heinrich T, Meise R. A support theorem for Quasiana- lyric functionals [J ]. Math. Nachr. , 2007, 28. 364- 387.
  • 10Boner J, Braun RW, Meise R, et al. Whitney's exten- sion theorem for non-quasianalytic classes of ultradif- ferentiab[ functions[J]. Studia Math. , 1991, 99(2) 155-184.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部