期刊文献+

S_(10)的非交换图刻画 被引量:1

Noncommuting Graph Characterization of S_(10)
下载PDF
导出
摘要 探讨了用非交换图刻画有限单群的AAM猜想,利用非交换图的性质,极大可解正规子群的特点,得到正规群列,再借助素因子不超过7的有限单群分类及扩张理论,得到了主要结论:10个点上的对称群S10可以用非交换图刻画.该刻画问题进一步完善了AAM猜想的内容,同时借助此方法,还可以解决单个单群或几乎单群的非交换图刻画问题. AAM conjecture about characterization of the finite simple groups by their non-commuting graphs was investigated.Using the properties of non-commuting graph,the specialties of maximal solvable normal subgroup,a normal serie was built.And according to the classification of finite simple groups with prime factors less than 7and extension theorem,the main result was proved,that was,S10,the symmetric group with more than 10 degrees,can be charactered by its noncommuting graph.The characterization problem further improved the content of the AAM conjecture.And using this method,at the same time,the single simple group or almost all simple groups can also be solved.
作者 王玲丽
机构地区 中北大学理学院
出处 《中北大学学报(自然科学版)》 CAS 北大核心 2015年第3期282-284,288,共4页 Journal of North University of China(Natural Science Edition)
基金 国家青年科学基金资助项目(11201133) 山西省青年科学基金资助项目(2012021001-1)
关键词 非交换图 素图 对称群 中心化子 noncommuting graph prime graph symmetric group centralizer
  • 相关文献

参考文献15

  • 1Neumann B H. A problem of Paul Erdos on group[J]. Journal of Australian Mathematics Society (Ser. A). 1976(21): 467-472.
  • 2Moghaddamfar A R. Shi WJ. On the noncommuting graph associated with a nite group[J]. Siberian MathematicalJournal. 2005. 46(2): 325-332.
  • 3Darafsheh M R Groups with the same noncommuting graphU]. Discrete Applied Mathematics. 2009. 157: 833-837.
  • 4Abdollahi A, Akbari S. Noncommuting graph of a groupDJ.Journal of Algebra, 2006, 298: 468-492.
  • 5Wang L L, Shi WJ. A new characterization of AlO by its noncommuting graphD]. Communications in Algebra, 2008, 36(2): 523-528.
  • 6Zhang L C. aD-characterization and noncommuting graph characterization of nite almost simple groups[D]. Iiangsu, Thesis of Suzhou University, 2008.
  • 7Wang L L. Shi WJ. Characterization of Aut(] 2) and Aut(ML) by their noncommuting graphs[J]. Algebra Colloquium, 2011, 18(2): 327-332.
  • 8WilliamsJ S. Prime graphcomponents of nite groups DJ.Journal of Algebra, 1981, 69: 487-513.
  • 9Chen G Y. On Thompson's conjecture[J].Journal of Algebra, 1996, 185: 184-193.
  • 10Chen G Y. Further reecture on Thompson's conjecture D].Journal of Algebra, 1999, 218: 276-285.

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部