期刊文献+

基于差分曲率的非局部均值图像降噪算法 被引量:2

A Non-Local Mean Image Denoising Algorithm Based on Difference Curvature
下载PDF
导出
摘要 传统非局部均值滤波算法忽略了图像块之间的结构相似性,造成搜寻相似像素不充分,使得一些图像细节被滤除.因此,利用差分曲率对图像边缘和斜坡等结构信息的良好检测性能,提出了一种基于差分曲率的非局部均值降噪算法.该方法充分利用图像块之间灰度值和差分曲率的欧氏距离共同确定权重,对图像块之间进行更好的相似性判断,进而优化传统非局部均值滤波算法.实验结果表明,与传统的非局部均值降噪算法相比,新算法能有效地保持图像边缘细节等信息,改善了传统非局部均值算法的去噪性能,取得了良好的降噪效果. The traditional non-local mean denoising algorithm ignored the structural similarity of image blocks,resulting in searching similar pixels inadequately and making some image details filtered out.Combining with differential curvature that could detect the edges and ramps of the image well,a new non-local mean denoising algorithm based on difference curvature was proposed.Making full use of the Euclidean distances of the difference curvature and the gray value among the image blocks to jointly determined the weight,the proposed method obtained better similarity judgment to improve the traditional non-local mean filtering algorithm.Experimental results show that,compared with traditional non-local mean denoising algorithm,the new algorithm can effectively maintain the image edge details and other information,which improves the denoising performance of traditional non-local mean algorithm and achieves good denoising results.
出处 《中北大学学报(自然科学版)》 CAS 北大核心 2015年第3期354-358,共5页 Journal of North University of China(Natural Science Edition)
基金 国家自然科学基金资助项目(61271357) 国家自然科学基金资助项目(61171178) 山西省国际合作项目(2013081035) 中北大学第十届研究生科技基金项目(20131035) 山西省高等学校优秀青年学术带头人支持计划资助项目 中北大学2013年校科学基金计划
关键词 非局部均值 差分曲率 优化参数 边缘信息 图像去噪 non-local means algorithm difference curvature optimum parameter edge information image denoise
  • 相关文献

参考文献16

  • 1Buades A, Coil B, MorelJ. Image denoising methods: a new nonlocal principle[J]. SIAM Review, 2010, 52 (1): 113-147.
  • 2Le Montagner Y. Angelini E D, Olivo-MarinJ. An unbiased risk estimator for image denoising in the presence of mixed poisson-gaussian noise[J]. IEEE Transactions on Image Processing. 2014, 23 (3): 1255-1268.
  • 3Luisier F, Blu T. Image denoising in mixed poissongaussian noise[J]. IEEE Transactions on Image Process, 2011. 20(3): 696-708.
  • 4Parrilli S, Poderico M, Angelino C V. et a1. A nonlo- cal SAR image denoising algorithm based on LLMMSE wavelet shrinkage[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(2): 606-616.
  • 5Luisier F, Blu T. Sure-let multichannel image denoising , interscale orthonormal wavelet thresholding[J]. IEEE Transactions on Image process, 2008, 17 ( 4 ) : 482-492.
  • 6Xiang Y W, Hong Y Y, Zhong K F. A new waveletbased image denoising using undecimated discrete wavelet transform and least squares support vector rnachineDJ. Expert Systems with Applications, 2010, 37 (10): 7040-7049.
  • 7Andria G, Attivissimo F, Cavone G. Linear filtering of 2-D wavelet coefficients for denoising ultrasound medical images[J]. Measurement, 2012, 45 ( 7): 1792- 1800.
  • 8WUJ, Tang C. PDE-based random-valued impulse noise removal based on new class of controlling functions]]]. IEEE Transactions on Image Processing, 2011, 20(9): 2428-2438.
  • 9Liu P, Huang F. Remote-sensing image denoising using partial differential equations and auxiliary images as priors[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(3): 358-362.
  • 10Guidotti P, Longo K Two enhanced fourth order diffusion models for image denoising[J].Journal of Mathematical Imaging and Vision, 2011, 40(2): 188- 198.

同被引文献9

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部