期刊文献+

酿酒酵母菌中过量表达BAT2和缺失PDC6提高异丁醇产率 被引量:3

Overexpression of BAT2 and deletion of PDC6 to increase isobutanol in Saccharomyces cerevisiae
下载PDF
导出
摘要 利用酿酒酵母发酵生产生物质能源异丁醇越来越受到学术界和工业界的重视。本研究通过DNA重组技术,提出一种提高酿酒酵母合成异丁醇的产率的方法。通过对酿酒酵母异丁醇合成代谢途径分析,过量表达了编码分支氨基酸转氨酶的BAT2基因和缺失编码内源性丙酮酸脱羧酶的PDC6基因,同时构建过量表达编码乙酰乳酸合酶ILV2基因和编码二羟基戊酸脱水酶的ILV3基因的表达质粒。将所构建突变株HAZL-7pILV2pILV3(W303-1A PGK1p-BAT2pdc6::R YEplac195-ILV3p-PGK1p-ILV3 YEplac181-PGK1p-ILV2)进行厌氧发酵。厌氧发酵60h,发酵液中异丁醇的产率从0.035g/L到0.4g/L,提高了11.4倍,乙醇的产率减少,乙酸的产率升高,甘油的产率基本稳定。酿酒酵母菌中过表达BAT2基因和缺失PDC6基因,同时过量表达ILV2和ILV3的表达质粒载体的基因修饰,对异丁醇的代谢流有明显的影响,异丁醇的产率提高11.4倍。这些研究为异丁醇产量的进一步提高奠定了理论基础。 Biomass isobutanol produced by Saccharomyces cerevisiae has been paid more and more attention.In this research,a method of increasing isobutanol yieldwas put forward by recombinant DNA technology.By the analysis of isobutanol synthesis pathway in Saccharomyces cerevisiae ,BAT2 (encoding branched chain amino acids transaminase),ILV2 (encoding acetolactate synthase)and ILV3 (encoding dihydroxy-acid dehydratase)were overpressed in this study.Meanwhile,endogenous pyruvate de-carboxylase encoded by PDC6 was deleted.Anaerobic fermentation of the mutant HAZL-7 pILV2 pILV3 (W303-1A PGK1p-BAT2 pdc6 ::R YEplac195-ILV3p-PGK1p-ILV3 YEplac181-PGK1p-ILV2 )were performed.After fermentation 60 hours, isobutanol production was from 0.035 g/L to 0.4 g/L,11.4-fold increase,ethanol production was decrease,acetic acid produc-tion was increase,and glycerol production was stable in the fermentation broth.In Saccharomyces cerevisiae ,the modification of overexpressed BAT2 ,deleted PDC6 and constructed expression plasmid of ILV2 and ILV3 have a significant effect on metabolic flux of isobutanol.Isobutanol production was increased by 11.4 times.These results provide a theoretical basis for the further improvement of the yield of isobutanol.
出处 《中国科技论文》 CAS 北大核心 2015年第12期1443-1449,共7页 China Sciencepaper
基金 国家自然科学基金资助项目(21206028) 高等学校博士学科点专项科研基金资助项目(20121317120014) 河北省自然科学基金资助项目(B2013202288)
关键词 酿酒酵母 异丁醇 BAT2 PDC6 ILV2 ILV3 Saccharomyces cerevisiae isobutanol BAT2 PDC6 ILV2 ILV3
  • 相关文献

参考文献14

  • 1Weber C,Farwick A,Benisch F,et al.Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels[J].Applied Microbiology and Biotechnology,2010,87(4):1303-1315.
  • 2Shota A,Taizo H,James C L.Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels[J].Nature,2008,451:86-89.
  • 3Atsumi S,Liao J C.Metabolic engineering for advanced biofuels production from Escherichia coli[J].Current Opinion in Biotechnology,2008,19(5):414-419.
  • 4Higashide W,Li Y,Yang Y,et al.Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose[J].Applied and Environmental Microbiology,2011,77(8):2727-2733.
  • 5Li Shanshan,Wen Jianping,Jia Xiaoqiang.Engineering Bacillus subtilis for isobutanol production by heterologous Ehrlich pathway construction and the biosynthetic2-ketoisovalerate precursor pathway overexpression[J].Applied Microbiology and Biotechnology,2011,91(3):577-589.
  • 6Blombach B,Riester T,Wieschalka S,et al.Corynebacterium glutamicum tailored for efficient isobutanol production[J].Applied and Environmental Microbiology,2011,77(10):3300-3310.
  • 7Varman A M,Xiao Y,Pakrasi H B,et al.Metabolic engineering of Synechocystis sp.strain PCC 6803for isobutanol production[J].Applied and Environmental Microbiology,2013,79(3):908-914.
  • 8Oh B R,Heo S Y,Lee S M,et al.Erratum to production of isobutanol from crude glycerol by agenetically engineered Klebsiella pneumoniae strain[J].Biotechnology Letters,2014,36(2):397-402.
  • 9Hong K K,Nielsen J.Metabolic engineering of Saccharomyces cerevisiae:a key cell factory platform for future biorefineries[J].Cellular and Molecular Life Sciences,2012,69(16):2671-2690.
  • 10Chen X,Nielsen K F,Borodina I,et al.Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism[J].Biotechnol Biofuels,2011,4(21):2089-2090.

同被引文献39

  • 1蔡车国,张秀丽,刘月英,戴玉聪,全丽,康星洋.优良啤酒酵母原生质体融合株GR_5的构建及其发酵特性[J].工业微生物,2006,36(1):34-37. 被引量:11
  • 2余晓红,陈洪兴,汪志君,方维明.啤酒酵母代谢副产物高级醇的影响因素研究进展[J].酿酒科技,2006(10):78-81. 被引量:13
  • 3王芬,由媛,全丽,陆香庆,曾婷,戴玉聪,刘月英.双亲灭活的原生质体融合株啤酒酵母DR9-2的构建及其特性的研究[J].酿酒,2007,34(5):72-75. 被引量:10
  • 4LIN M, ZHOU G H, WANG Z G, et al. Functional analysisof AI-2/LuxS from bacteria in Chinese fermentedmeat after high nitrate concentration shock [J]. EuropeanFood Research and Technology, 2015,240(1) :119-127.
  • 5PARK H, YEO S, JI Y, et al. Autoinducer-2 associatedinhibition by Lactobacillus sakei NR28 reduces virulenceof enterohaemorrhagic Escherichia coli 0157 : H7[J]. Food Control, 2014, 45: 62-69.
  • 6JIMENEZ J C, FEDERLE M J. Quorum sensing ingroup A Streptococcus [J]. Frontiers in Cellular and InfectionMicrobiology, 2014, 4 : 1-17.
  • 7CHRISTIAEN S E A , MOTHERWAY M O C,BOTTACINI F, et al. Auto inducer-2 plays a crucialrole in gut colonization and probiotic functionality ofBifidobacterium breve UCC2003 [J]. 2014, 9 (5 ):1-13.
  • 8YEO S, PARK H, JI Y, et al. Influence of gastrointestinalstress on autoinducer-2 activity of two Lactobacillusspecies [J]. FEMS Microbiology Ecology, 2015,91(7) : fiv065.
  • 9BUCKBL, AZCARATE-PERILM A, KLAENHAMMERT R Role of autoinducer-2 on the adhesion abilityof 'Lactobacillus acidophilus [J]. Journal of AppliedMicrobiology, 2009, 107(1) : 269-279.
  • 10TANNOCKGW, GHAZALLY S, WALTER J, et al.Ecological behavior of Lactobacillus reuteri 100-23 isaffected by mutation of the LuxS gene [J]. Applied andEnvironmental Microbiology, 2005, 71 ( 12 ) :8419-8425.

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部