期刊文献+

南极磷虾冻藏过程中氟的迁移变化规律 被引量:9

Migration Variation of Fluoride during the Storage of Euphausia superba
原文传递
导出
摘要 为阐明南极磷虾冻藏过程中氟的迁移机制,研究了南极磷虾在-20,-80℃冻藏过程中氟的迁移变化规律。结果表明,冻藏时间和冻藏温度对整虾中的总氟含量影响不显著,冻藏时间对虾壳和虾肉中几种赋存形态氟的含量影响显著,冻藏温度对虾壳和虾肉中几种赋存形态氟的含量影响不显著。在磷虾捕捞后3-10个月的冻藏期间,虾壳和虾肉中氟含量变化差异不显著;在11-15个月的冻藏期间,虾壳中氟含量逐渐降低,虾肉中氟含量逐渐增加,各贮藏时段的氟含量的测定值差异显著。虾壳、虾肉中几种赋存形态氟含量的变化研究表明,随着贮藏时间的延长,虾壳中的可交换态氟含量降低,虾肉中的可交换态氟和水溶态氟含量增加。 Antarctic krill is known as "food bank for the world's future" for its huge resources reserves and rich nutrition. But high fluoride content limits the development and utilization of Antarctic krill. Migration and variation of fluoride content during frozen at-20 ℃ and-80 ℃ was studied. The results showed that temperature and storage time had no effect on various combined forms of fluorine in whole krill. Storage time had a significant effect on various combined forms of fluorine in krill carapace and muscle, while temperature had not. During the period of storage from 3 to 10,difference in fluorine content in krill carapace and muscle was not significant. During the period of storage from 11 to 15 months, fluorine content in krill carapace was gradually reduced, while fluorine content in krill muscle was gradually increased and fluorine content had significant change in krill carapace and muscle during each storage time. According to a research on various combined forms of fluorine, exchangeable fluorine content in krill carapace was reduced, while exchangeable and water soluble fluorine content increased in krill muscle as the extension of time.
出处 《中国食品学报》 EI CAS CSCD 北大核心 2015年第4期81-86,共6页 Journal of Chinese Institute Of Food Science and Technology
基金 国家自然科学基金项目(31201311) 国家"863"计划项目(2011AA080911)
关键词 南极磷虾 氟的迁移 冻藏 Euphausia superba migration of fluoride frozen storage
  • 相关文献

参考文献15

  • 1Everson I. Antarctic krill: a reappraisal of its distribution[J]. Polar Record, 1976, 18(112): 15-23.
  • 2Tou J C, Jaczynski J, Chen Y. Krill for human consumption: nutritional value and potential health benefits[J]. Nu- trition Reviews, 2007, 65(2): 63-77.
  • 3Everson I, Miller GM. Krill mesoseale distribution and abundance: results and implications of research during the BIOMASS Programme[M]. Southern Ocean Ecology: The BIOMASS Perspective. UK: Cambridge University Press, 1994: 25-28.
  • 4FAO W. Joint FAO/WHO food standards programme codex committee additives and contaminants[R]. Geneva: FAO/ WHO, 1997.
  • 5Nicol S, Stolp M. Moulting, feeding, and fluoride concentr.ation of the Antarctic krill Euphausia superba dana[J]. Journal of Crustacean Biology, 1991, 11(1): 10-16.
  • 6Sands M, Nicol S, McMinn A. Fluoride in Antarctic marine crustaceans[J]. Marine Biology, 1998, 132(4): 591-598.
  • 7Christians O, Leinemann M. Investigations on the migration of fluoride from the shell into the muscle flesh of Antarctic krill (Euphausia superba Dana) in dependence of storage temperature and storage time[J]. 1983, 34(1): 87-95.
  • 8Christians O, Leinemann M. Untersuchungen uber Fluor im Krill (Euphaxtsia superba dana)[J]. Informationen fur die Fischwirtschaft, 1980, 27(6): 254-260.
  • 9Boone R, Manthey M. The anatomical distribution of fluoride within various body segments and organs of Antarctic krill (Euphausia Superba Dana)[J]. Archiv Fur Fischereiwissenschaft, 1983,34(1): 81-85.
  • 10Yin X, Chen L, Sun L, et al. Why do penguins not develop skeletal fluorosis?[J]. Fluoride, 2010, 43 (2):108- 118.

二级参考文献9

共引文献26

同被引文献133

引证文献9

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部