期刊文献+

顺序输送管道水力瞬变模拟的有限体积法 被引量:3

Finite volume method for hydraulic transient simulation of batching pipeline
下载PDF
导出
摘要 针对顺序输送水力瞬变中输送介质不连续的情况,提出采用有限体积法取代传统的特征线法进行求解,以减少插值误差。首先得到水击基本方程基于压力-流速的非守恒有限体积离散格式,通过Rieman求解器得到控制体界面的Rieman解。采用MUSCL-Hancock Primitive方法进行界面数值重构与时间推进,构建时空二阶精度的TVD格式。边界的处理采用Rieman不变量与构造虚拟边界节点相结合的方法,使其与整体精度保持一致。数值计算与实验对比,证明了本文算法能有效抑制非物理振荡,具有精度高、鲁棒性好的特点。 To minimize the interpolating errors,a finite volume method is proposed in this paper concerning the discontinuity of the transportation media in batching,which is an alternative for the traditional MOC.Firstly,a finite volume,pressure-velocity based nonconservative scheme is derived from the transient flow model of batching pipeline.The Rieman solvers are used for calculating the state in the interface of a control volume in the scheme.Then a MUSCL-Hancock Primitive method,which is TVD and second-order accurate both in space and time,is introduced in the process of reconstruction of the interface state and time evolution.In dealing with the boundary conditions,the method of Rieman invariants and the construction of the virtual boundary are combined,which is also second-order accurate.Finally,through comparing the results of numerical calculation with that of the experiments,it is proved that the method proposed by this paper can effectively inhibit the nonphysical oscillations and is characterized by high precision and robustness.
出处 《计算力学学报》 CAS CSCD 北大核心 2015年第3期418-422,428,共6页 Chinese Journal of Computational Mechanics
基金 重庆市科技攻关(cstc2012gg-sfgc00002) 后勤工程学院学术创新(YZ08-43601)资助项目
关键词 顺序输送 水力瞬变 有限体积法 Rieman求解器 MUSCL格式 batching pipeline hydraulic transient finite volume method Rieman solver MUSCL-type scheme
  • 相关文献

参考文献15

  • 1Chaudhry M H. Applied Hydraulic TransientsEM]. New York: Van Nostrand Reinhold, 1979.
  • 2Rohani M,Afshar M H. Simulation of transient flow caused by pump failure: point-Implicit method of characteristics[J]. Annals of Nuclear Energy, 2010, 37(12) : 1742-1750.
  • 3Afshar M H,Rohani M. Water hammer simulation by implicit method of characteristic [J]. International Journal of Pressure Vessels and Piping,2008,85(12): 851-859.
  • 4Zhao M, Ghidaoui M S. Godunov-type solutions for water hammer flows[J]. Journal of Hydraulic Engi- neering, 2004,130(4) : 341-348.
  • 5Szymkiewicz R, Mitosek M. Analysis of unsteady pipe flow using the modified finite element method[J]. Communications in Numerical Methods in Enginee- ring, 2005,21(4) : 183-199.
  • 6邓松圣,蒲家宁.顺序输送水力瞬变全过程模拟[J].油气储运,1996,15(12):16-19. 被引量:8
  • 7陈明,蒲家宁.分析管道顺序输送水力瞬变的动态网格特征线计算法[J].油气储运,2008,27(12):36-42. 被引量:1
  • 8Bourdarias C, Gerbi S. A conservative model for un- steady flows in deformable closed pipesand and its implicit second-order finite volume diseretisation[J]. Computer and Fluids, 2008(37) : 1225-1237.
  • 9Kerger F, Arehambeau P, Erpicum S, et al. An exact riemann solver and a godunov scheme for simulating highly transient mixed flows[J]. Journal of Compu- tational and Applied Mathematics, 2011 (235) : 2030- 2040.
  • 10Streeter V L. Water hammer analysis[J]. Journal of the Hydraulics Division November, 1969(6): 95.

二级参考文献6

共引文献11

同被引文献19

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部