期刊文献+

LIBSVM,LIBLINEAR,SVM^(muticlass)比较研究 被引量:8

The Comparison Study of LIBSVM, LIBLINER, SVM^(multiclass)
原文传递
导出
摘要 SVM是Vapnik等人在统计学习理论基础上针对线性分类器提出的一种最佳分类准则,被广泛应用于文本、图像、语音等多个领域的分类问题。LIBSVM、LIBLINEAR、SVMmulticlass是基于支持向量机(SVM)原理集成的两类或多类分类器工具包,这三种工具均实现了对数据的最优化分类,但彼此之间也有各自的特点。对于不同规模的数据集,即样本数与特征数比例不同的数据集的分类结果会存在差异。因此,本文从训练时间(Training Time),分类准确率(Precision)和采用的线性核函数(Kernel Function)这三个方面对各个工具包的分类性能进行详细分析,从而给出三种工具的各自的优缺点,以便为使用这三种工具的研究者们提供一些经验支持。实验结果表明,针对线性可分的数据,LIBLINEAR工具包具有训练时间短,分类准确率高的特点,非常适用于大规模数据的分类。 SVM is a linear classifier based on the optimum criterion of statistical learning theory. It is widely used in text, pictures, speech, and other domains. LIBSVM, LIBLINEAR, and SVMmulticlass are three binary or multiclass classifier tools based on the theory of SVM. The three tools all can classify data, but they have different characteristics. To variety of corpus with different scales, their performances vary greatly. Hence, this paper compares the three classifiers on training time, precision, and the employed kernel functions. According the comparison, we concluded the advantages and disadvantages of the three classifiers to give some positive suggestions for user of this domain. Experimental results show that the LIBLINEAR gives best performance compared with the other two classifiers, especially when be used in big data classifications.
作者 崔萌 张春雷
出处 《电子技术(上海)》 2015年第6期1-5,共5页 Electronic Technology
关键词 LIBSVM LIBLINEAR SVMmulticlass 比较研究 LIBSVM LIBLINEAR SVMmulticlass Comparison study
  • 相关文献

参考文献10

  • 1Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh,Xiang-Rui Wang, Chih-Jen Lin. LIBLINEAR: A Library for Large Linear Classification, Journal of Machine Learning Research 9 (2008) 1871-1874.
  • 2K. Crammer and Y. Singer. On the Algorithmic Implementation of Multi-class SVMs, JMLR, 2001.
  • 3I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support Vector Learning for Interdependent and Structured Output Spaces, ICML, 2004.
  • 4Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin. A practical guide to support vector classification. Technical report, Department of Computer Science, National Taiwan University, 2003.
  • 5C:C. Chang and C:J. Lin. LIBSVM : a library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2:27:1-27:27, 2011. 6.
  • 6M. West, C. Blanchette, H. Dressman, E. Huang, S. Ishida, R. Spang, H. Zuzan, J. A. Olson, Jr., J. R. Marks, and J. R. Nevins. Predicting the clinical status of human breast cancer by using gene expression profiles. Proceedings of the National Academy of Sciences, 98:11462-11467, 2001.
  • 7T. R. Golub, D. K. Slonim, E Tamayo, C. Huard, M. Gaasenbeek, J. E Mesirov, H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield, and E. S. Lander. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 286(5439):531, 1999.
  • 8John C. Platt. Fast training of support vector machines using sequential minimal optimization. In Bernhard Sch61kopf, Christopher J. C. Burges, and Alexander J. Smola, editors, Advances in Kernel Methods-Support Vector Learning, Cambridge, MA, 1998.
  • 9U. Alon, N. Barkai, D. A. Notterman, K. Gish, S.Ybarra, D.Mack, and A. J. Levine. Broad pattems of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Cell Biology, 96:6745- 6750, 1999.
  • 10Burges C J C. A tutorial on support vector machines for pattern recognition [J]. Data mining and knowledge discovery, 1998, 2(2): 121-167.

同被引文献54

引证文献8

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部