期刊文献+

融合模糊Histon阈值和FCM的Lab空间色彩分割算法 被引量:4

Lab spaces color segmentation algorithm based on fuzzy Histon threshold and FCM clustering
下载PDF
导出
摘要 提出了一种简单有效的自适应无监督方法。在CIELab空间中利用模糊Histon阈值技术获得图像中所有可能的均匀区域,即通过寻找峰值,区域初始分割和区域颜色相似性合并,获得由聚类中心标注的均匀区域,提出自适应FCM聚类算法以提高均匀区域之间的紧密度,最终完成色彩分割。该算法已成功应用到伯克利图像库,相比当前一些无监督色彩分割算法,例如:Mean-Shift、NCuts取得了合理更好的划分,视觉上有效提取目标物体,具有一定鲁棒性。 This paper proposes a simple and effective adaptive unsupervised method. Fuzzy Histon threshold technique is applied to obtain all possible homogeneous regions of the color image in the Lab space. Finding the peak value, regions initialization, color on the regional similarity combination, it obtains the homogeneous regions labeling by the corresponding cluster centers. An adaptive FCM clustering algorithm is used to improve the compactness between the homogeneous regions in the final color segmentation. This algorithm has been successfully applied to the Berkeley image database, compared with some current segmentation algorithms, such as:Mean-Shift and NCuts make a reasonable division of better, in the vision it effectively extracts the target, has certain robustness.
出处 《计算机工程与应用》 CSCD 北大核心 2015年第11期162-166,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.10771043)
关键词 色彩分割 Lab均匀色彩空间 模糊Histon直方图阈值 模糊C均值(FCM)聚类 color segmentation Lab even color spaces fuzzy Histon-histogram threshold Fuzzy C-Means(FCM)clustering
  • 相关文献

参考文献11

  • 1Bezdek J C.Pattern recognition with fuzzy objective function algorithms[M].[S.l.] :Kluwer Academic Publishers,1981.
  • 2林开颜,吴军辉,徐立鸿.彩色图像分割方法综述[J].中国图象图形学报(A辑),2005,10(1):1-10. 被引量:322
  • 3Hanbury A.Constructing cylindrical coordinate color spaces[J].Pattern Recognition Letters,2008,29:494-500.
  • 4Cheng H D,Jiang X H,Sun Y,et al.Color image segmentation:advance and prospect[J].Pattern Recognition,2001,34(12):2259-2281.
  • 5Mohabey A,Ray A K.Rough set theory based segmentation of color images[C] //Proc 19th International Conf North Amer Fuzzy Inform Process Soc,2000:338-342.
  • 6Tan K S.Color image segmentation using histogram thresholding fuzzy c-means hybrid approach[J].Pattern Recognition,2011,44(1):1-15.
  • 7Pantofaru C,Hebert M.A comparison of image segmentation algorithms,CMU-RI-TR-05-40[R].[S.l.] :CMU,2005.
  • 8Meila M.Comparing clusterings:an axiomatic view[C] //Proc International Conference on Machine Learning,2005:577-584.
  • 9Martin D,Fowlkes C,Tal D,et al.A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C] //Proceedings of IEEE International Conference on Computer Vision,2001:416-423.
  • 10Freixenet J,Munoz X.Yet another survey on image segmentation:region and boundary information integration[C] //Proceedings of European Conference on Computer Vision,2002:408-422.

二级参考文献10

共引文献321

同被引文献28

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部