期刊文献+

基于联合正则化的稀疏磁共振图像重构 被引量:1

Reconstruction of sparse MRI based on compound regularizers
下载PDF
导出
摘要 基于压缩感知的MRI图像重构是利用图像稀疏性,从数量非常有限的观测数据集合中重构出图像,通常L1范数能够产生稀疏解,但它往往与真实稀疏解(L0的解)差距甚大,重构效果不理想,而且在一些图像重构的应用中,单一正则项的作用有限并不能很好地完成复原任务。针对此问题,引入待重构图像的L1/2范数作为新正则项,与TV范数构成联合正则项,采用交替增广拉格朗日乘子法进行求解。为考察方法的稳定性和重构效果,结合不同参数等评价标准与现有的图像重构模型进行比较。实验结果表明,联合正则项的图像重构模型相对于原有模型,图像重构结果稳定性好,可以获得更高的信噪比。 Magnetic resonance images can be reconstructed close to the original in which way that we use the compressed sensing from a very limited number of observation data set. Usually the L1 norm can produce a sparse solution, but it is different from the true sparse solution (L0 solution), and result in the inferior reconstruction, what's more, in the application of some image reconstruction, a single reguiarization is limited and can't complete the task of recovery. Aiming at this problem, the method is introduced the L1/2 norm as a new regular of the reconstructed images, combined with the TV regular to reconstruct the image. Finally, to verify the stability and reconstruction effect, selecting different parameters and evaluation standard are compared with existing models of image reconstruction. The experiments indicate that the improved model compared to the traditional model can have excellent stability and get a higher signal-to-noise ratio.
出处 《电子设计工程》 2015年第14期166-169,共4页 Electronic Design Engineering
基金 国家自然科学基金(61203245) 河北省自然科学基金资助课题(F2012202027)
关键词 磁共振 压缩感知 联合正则化 L1/2范数 magnetic resonance imaging compressed sensing compound regularizers L1/2 norm
  • 相关文献

参考文献10

  • 1E Candes. Compressive sampling. Proceedings of the International Congress of Mathematicians[J].Madrid, Spain,2006(3):1433-1452.
  • 2Peng X,Zhang M,Zhang J,et al. An alternative recovery algorithm based on SL0 for multiband signal[C]//Instrumentation and Measurement Technology Conference (I2MTC), 2013 IEEE International. IEEE,2013:114-117.
  • 3Bhaskar D. Rao,Kenneth Kreutz-Delgado. An affine scaling methodology for best basis selection[J].IEEE Transactions on Signal Processing,1999,47(1):187-200.
  • 4Bioucas-Dias J M, Figueiredo M A T, Oliveira J P. Total variation based image deconvolution: a majorization minimization approach[J].IEEE Conference, Toulouse, 2006(2):278-281.
  • 5E. J. Candes, J. Romberg, T. Tao. Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information [J].IEEE Transaction on Information Theory,2006,52(2):489-509.
  • 6S. G. Mallat,Z. Zhang. Matching Pursuits with Time-frequency Dictionaries[J].IEEE Transactions on Signal Processing,1993:3397-3415.
  • 7Tropp J A,Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit[J].IEEE Transactions on Information Theory,2007,53(12):4655-4666.
  • 8E. J. Candes, M. Wakin. An Introduction to Compressive Sampling[J].IEEE Signal Processing Magazine,2008,25(2):21-30.
  • 9XU Zong-ben,CHANG Xiang-yu,XU Feng-min. L-1/2 Regularization: A Thresholding Representation Theory and a Fast Solver[J].IEEE Transactions on neural net-works and Learning Systems,2012,23(7):1013-1027.
  • 10Stephen Boyd,Neal Parikh,et al. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers[J].Foundation and Trends in Machine Learning,2010,3(1):1-122.

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部