期刊文献+

强迫与混合对流条件下水流顺掠冰柱传热特性 被引量:2

Heat transfer characteristics of water flowing along icicle under forced and mixed convection
下载PDF
导出
摘要 通过实验研究了对流与混合对流条件下水流顺掠冰柱融化过程的相界面移动规律及传热特性。改变冰柱初始尺寸、初始冰柱温度、水流速度与温度等参数,采用工业摄像机记录了冰柱相界面的移动规律,构建了影像实验数据与冰柱相界面传热系数之间的映射关系。通过对实验结果的分析与讨论,获得结论如下:不同速度条件下的平均相界面位置变化趋势相似,相界面随时间呈单调递减幂函数形式变化;平均对流换热系数随水流速度或水流温度的增加而增大,且平均对流换热系数随时间呈递增趋势变化;在不同水流速度或水流温度条件下,Nu随着Gr/Re2先增大经过最高点后再减小;获得了水流顺掠冰柱融化过程Nu与Gr、Re、Pr及Ste之间的经验关联式。 Experiment is conducted to study The heat characteristics and moving regulation of phase change interface in the progress of water flowing along icicle under forced and mixed convection The mapping relationship between the experimental data and the heat transfer coefficient in phase change interface of icicle is established.With various initial dimensions of icicle,initial temperatures in icicle,velocities and temperatures of water,moving regulation of phase change interface of icicle is recorded using industrial cameras The results show that,The variation trend of each location of phase change interface is similar with different velocities,and the location of phase change interface decreases with time in a form of power function;the average convective heat transfer coefficient increase over time with the increase of velocity and temperature of water,with different velocities and temperatures of water,at first Nu increases steadily with Gr/Re 2 ,however it witnesses a fall trend after reach to the peak point.Empirical correlation of Nu 、Gr 、Re 、Prand Ste is established.
作者 孟凡康 于航
出处 《土木建筑与环境工程》 CSCD 北大核心 2015年第3期102-107,共6页 Journal of Civil,Architectural & Environment Engineering
关键词 水流顺掠冰柱 融化传热 混合对流 实验研究 water flowing along icicle melting heat mixed convection experimental research
  • 相关文献

参考文献13

  • 1Sahagian D. Global physical effects of anthropogenic hydrological alterations : sea level and water redistribution [J]. Global and Planetary Change, 2000, 25(1) ..39-48.
  • 2Biele J, Ulamec S, Hilchenbach M, et al. In situ analysis of Europa ices by short-range melting probes [J]. Advance in Space Research, 2010, 48 (4): 755-763.
  • 3Choi I S, Kim J D, Kim E. Experimental characteristics of a storage tank on a harvest-type ice storage system [J]. International Journal of Heat and Mass Transfer, 2002, 45(7)..1407-1412.
  • 4Soltan B K, Ardehali M M. Numerical simulation of water solidification phenomenon for ice-on-coil thermal energy storage application[J]. Energy Conversion and Management, 2003, 44(1)..85-92.
  • 5Ho C J, Chen S. Numerical simulation of melting ofice around a horizontal cylinder [J]. International Journal of Heat and Mass Transfer, 1986, 29 (9).. I359-1369.
  • 6Cheng K C , Indaba H , Gilpin R. Effects of natural convection on ice formation around an isothermally cooled horizontal cylinder F J]. Journal of Heat Transfer, 1988~ 110..931-937.
  • 7Ameen F R. Stagnation-line melting of ice cylinders transverse to warm air flow [JT, International Journal of Refrigeration, 1994, 17(6) ..381-390.
  • 8Yamada M, Fukusako S , Kawanami T,et al. Melting heat transfer characteristics of a horizontal ice cylinder immersed in quiescent saline water [J]. International Journal of Heat and Mass Transfer, 1997, 40 (18): 4425-4435.
  • 9Yamada M, Okada M. Enhancement of the melting of an ice cylinder by the combination with the condensation of a saturated steam flow [J]. Journal of Thermal Science and Technology, 2001, 6 (1) : 43-56.
  • 10Scanlon T J, Stickland M T. An experimental and numerical investigation of natural convection melting FJ]. International Communications in Heat and Mass Transfer, 2001, 28(2) ..181-190.

同被引文献23

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部