期刊文献+

基于社交网络服务位置的用户相似性计算方法

User Similarity Calculation Based on Location for Social Network Services
下载PDF
导出
摘要 为了进一步改进基于位置的社交网络服务中用户的相似性计算,提出一种有效的使用位置语义计算用户相似性的新方法。该方法通过位置语义来准确地获取用户的意图以及兴趣爱好,并且能够根据层次位置类别计算出不同位置用户的相似性。通过实验验证,表明该方法优于传统的用户相似性计算方法。 In order to further improve user similarity calculation based on social network service,this paper proposes a new effective method to calculate the user similarity using the semantics of the location. The method can obtain the user's intentions and interests accurately,and calculates the user similarity according to different level position category. Experimental results verify that this method is superior to the traditional user similarity method.
作者 魏静
出处 《计算机与现代化》 2015年第7期9-14,共6页 Computer and Modernization
关键词 用户相似性 社交网络 基于位置的服务 user similarity social networking services based on location
  • 相关文献

参考文献17

  • 1李晓静,张晓滨.基于LCS的用户时空行为兴趣相似性计算方法[J].计算机工程与应用,2013,49(20):251-254. 被引量:6
  • 2袁书寒,陈维斌,傅顺开.位置服务社交网络用户行为相似性分析[J].计算机应用,2012,32(2):322-325. 被引量:27
  • 3朱立超,李治军,姜守旭.基于位置的社交网络研究综述[J].智能计算机与应用,2014,4(4):60-62. 被引量:3
  • 4Guy I, Ronen I, Wilcox E. Do you know?: Recommending people to invite into your social network[C]// International Conference on Intelligent User Interfaces. 2009:77-86.
  • 5范超然,黄曙光,李永成.微博社交网络社区发现方法研究[J].微型机与应用,2012,31(23):67-70. 被引量:10
  • 6McDonald D W. Recommending collaboration with social networks: A comparative evaluation[C]// Proceedings of the Conference on Human Factors in Computing Systems. 2013:598-600.
  • 7Ehrlich K, Lin C Y, GriffithsFisher V. Searching for experts in the enterprise: Combining text and social network analysis[C]// Proceedings of the International ACM SIGGROUP Conference on Supporting Group Work. 2007:117-126.
  • 8Nisgav A, PattShamir B. Finding similar users in social networks: Extended abstract[C]// Proceedings of the 21st Annual ACM Symposium on Parallel Algorithms and Architectures. 2009:169-177.
  • 9Chen Yukun, Jiang Kai, Zheng Yu, et al. Trajectory simplification method for locationbased social networking services[C]// Proceedings of the International Workshop on Location Based Social Networks. 2009:33-40.
  • 10Krumm J, Horvitz E. Predestination: Inferring destinations from partial trajectories[C]// Proceedings of the 8th International Conference on Ubiquitous Computing. 2006:243-260.

二级参考文献119

  • 1张利军,李战怀,王淼.基于位置信息的序列模式挖掘算法[J].计算机应用研究,2009,26(2):529-531. 被引量:12
  • 2Adamic L A, Glance N. The political blogosphere and the 2004 US election: divided they blog. In: Proceedings of the 3rd International Workshop on the Weblogging Ecosystem, New York, USA: ACM, 2005. 36-43.
  • 3Jeong H, Mason S, Barabasi A L, Oltvai Z N. Lethality and centrality in protein networks. Nature, 2001, 411(6833): 41-42.
  • 4Ahn Y Y, Bagrow J P, Lehmann S. Link communities reveal multiscale complexity in networks. Nature, 2011, 466(7307): 761-764.
  • 5Gregory S. Fuzzy overlapping communities in networks. Journal of Statistical Mechanics: Theory and Experiment, 2011, 2:P02017.
  • 6Newman M E J. The structure and function of complex networks. SIAM Review, 2003, 45(2): 167-256.
  • 7Scheffer M. Complex systems: foreseeing tipping points. Nature, 2010, 467(7314): 411-412.
  • 8Newman M E J. Networks: an Introduction. New York: Oxford University Press. 2010.
  • 9Newman M E J. Scientific collaboration networks: I. network construction and fundamental results. Physical Review E, 2001, 64(1): 016131.
  • 10Zeng J, Cheung W K, Li C H, Liu J M. Coauthor network topic models with application to expert finding. In: Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology. Toronto, Canada: IEEE, 2010. 366-373.

共引文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部