期刊文献+

一种基于聚类分析的跳频信号自动分选方法 被引量:3

An automatic sorting method of frequency hopping signal based on clustering analysis
下载PDF
导出
摘要 为了从复杂电磁环境中分选出跳频信号,提出了一种基于聚类分析的自动分选方法。该方法首先将信号特征参数估计等效成聚类分析问题,估计测量集中所包含的信号个数及各信号的特征参数,包括载频、带宽和入射方向。然后根据跳频信号的跳速范围,通过对各截获信号的特征参数进行序贯聚类,剔除干扰,获得期望的跳频信号。仿真实验表明,所提出的方法能够从复杂环境中正确地分选出跳频信号。 To sort frequency hopping signals in complex communication environment, a clustering analysis based automatic sorting method is proposed. This method considers the problem of signal feature parameters estimate as an clustering analysis problem, estimates the signal number included in measurement set, and extracts the corresponding feature parameters of each signals, such as carrier frequency, bandwidth and direction of arrival. Based on the hopping rate range of FH signals, the proposed method then uses the feature parameters of detected signals to cluster sequentially, delete interference signals and extracts the expected FH signals. Simulation results show that the proposed method is able to correctly sort FH signals in complex communication environment.
出处 《航天电子对抗》 2015年第3期52-55,共4页 Aerospace Electronic Warfare
关键词 聚类分析 跳频(FH) 参数估计 信号分选 cluster analysis frequency hopping parameter estimate signal sorting
  • 相关文献

参考文献6

二级参考文献44

  • 1牛琨,张舒博,陈俊亮.融合网格密度的聚类中心初始化方案[J].北京邮电大学学报,2007,30(2):6-10. 被引量:16
  • 2Han J W, Kamber M. Data Mining Concepts and Techniques[M]. Singapore: Elesvier Inc., 2006.
  • 3Ye Y M, Huang Z X, Chen X J, et al. Neighborhood Density Method for Selecting Initial Cluster Centers in K-Means Clustering[C]//Proceedings of PAKDD'06: Advances in Knowledge Discovery and Data Mining, 10th Pacific-asia Conference, Singapore: Springer, 2006:189- 195.
  • 4He J, Lan M, Tan C L, et al. Initialization of Ouster Refinement Algorithms: A Review and Comparative Study[C]//Proceedings of International Joint Conference on Neural Networks, Budapest, 2004:297- 302.
  • 5Yager R R, Filer D P. Approximate Clustering Via the Mountain Method[J]. IEEE Trans. on SMC, 1994, 24(8): 1279- 1284.
  • 6Chiu S L. Fuzzy Model Identification Based on Ouster Estimation[ J ]. Journal of Intelligent and Fuzzy Systems, 1994, 2(3) : 267 - 278.
  • 7Kaufman L. Finding Groups in Data: An Introduction to Ouster Analysis[M]. New York: Wiley, 1990.
  • 8Hung M C, Yang D L. An Efficient Fuzzy C-means Clustering Algorithm[C]//Proceedings of the 2001 IEEE International Conference on Data Mining,Washington,2001:225-232.
  • 9http ://www. ics. uci. edu.
  • 10Richard A.Poisel:Introduction to Communication Electronic Warfare Systems[M].New York:Artech House,2002.

共引文献32

同被引文献8

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部