期刊文献+

Surface tension of lithium bromide aqueous solution/ammonia with additives and nano-particles 被引量:2

Surface tension of lithium bromide aqueous solution/ammonia with additives and nano-particles
下载PDF
导出
摘要 In order to investigate the effect of additives and nano-particle on the surface tensions of lithium bromide(Li Br) aqueous solution/ammonia, many experiments were carried out based on Wilhelmy plate method. Firstly, the surface tension of Li Br aqueous solution with 1-octanol was measured and then the comparison between the measured results and previous experimental results was given to verify the measuring accuracy. Some new additives, such as cationic surfactants cetyltrimethyl ammonium chloride(CTAC), and cetyltrimethyl ammonium bromide(CTAB) were chosen in the experiments. The experimental results show that CTAC and CTAB can obviously reduce the surface tension of Li Br aqueous solution/ammonia. In addition, it is found that nano-particles cannot remarkably decrease the surface tension of Li Br aqueous solution/ammonia. However, the mixed addition of additives and nano-particles can remarkably affect the surface tension of Li Br aqueous solution/ammonia. That is to say, additives play more important role in reducing the surface tension of Li Br aqueous solution/ammonia. But nano-particles may enhance the heat transfer in the absorption refrigeration process. In order to investigate the effect of additives and nano-particle on the surface tensions of lithium bromide(Li Br) aqueous solution/ammonia, many experiments were carried out based on Wilhelmy plate method. Firstly, the surface tension of Li Br aqueous solution with 1-octanol was measured and then the comparison between the measured results and previous experimental results was given to verify the measuring accuracy. Some new additives, such as cationic surfactants cetyltrimethyl ammonium chloride(CTAC), and cetyltrimethyl ammonium bromide(CTAB) were chosen in the experiments. The experimental results show that CTAC and CTAB can obviously reduce the surface tension of Li Br aqueous solution/ammonia. In addition, it is found that nano-particles cannot remarkably decrease the surface tension of Li Br aqueous solution/ammonia. However, the mixed addition of additives and nano-particles can remarkably affect the surface tension of Li Br aqueous solution/ammonia. That is to say, additives play more important role in reducing the surface tension of Li Br aqueous solution/ammonia. But nano-particles may enhance the heat transfer in the absorption refrigeration process.
出处 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1979-1985,共7页 中南大学学报(英文版)
基金 Project(51206033)supported by the National Natural Science Foundation of China Projects(2011M500652,2013T60354)supported by the China Postdoctoral Science Foundation Project(2011LBH-Z11139)supported by the Heilongjiang Postdoctoral Science Foundation,China
关键词 lithium bromide AMMONIA ADDITIVES NANO-PARTICLES surface tension lithium bromide ammonia additives nano-particles surface tension
  • 相关文献

参考文献4

二级参考文献67

共引文献47

同被引文献19

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部