期刊文献+

一种基于IPCM的自适应曲线检测算法

A Self-Adaptive Curve Detection Algorithm Based on IPCM
原文传递
导出
摘要 模糊球壳聚类(FCSS)算法和基于改进型可能性C-均值聚类(IPCM)的球壳聚类(IPCSS)算法都是基于梯度的交错寻优方法,在检测圆或圆弧曲线时容易陷入局部极小值,从而得到错误的检测结果,同时其不能自动识别曲线的条数.针对上述两个缺点,在IPCM的基础上用拟合法计算半径和圆心,很大程度上克服了陷入局部极小值的缺点,同时引入特征间隙的方法,实现了曲线条数的自动识别.大量数值仿真实验和实际数据实验表明,提出的算法对圆或圆弧型曲线具有良好的自适应检测效果. Fuzzy C-spherical shell cluster(FCSS) algorithm and improved possibilistic C- spherical shell cluster(IPCSS) algorithm based on improved possibilistic C-means cluster(IPCM) are alternating optimization strategies based on gradient. Therefore, the two algorithms are easy to fall into local minimum value when detecting round or circular arc curve, and then lead to error results. In addition, they cannot identify automatically the number of the curves. According to the two weaknesses, this paper proposed a new algorithm on the basis of the IFCM. It puts to use fitting method to calculate radius and center, and overcomes the shortcoming of trapping in local minimum to a great extent. At the same time, a method of characteristics gap is introduced and implements the automatic identification of the curves. A large number of emulational experiments and actual data experiments show that the proposed algorithm for round or circular arc curve has a good adaptive detection effect.
出处 《数学的实践与认识》 北大核心 2015年第13期180-186,共7页 Mathematics in Practice and Theory
基金 国家自然科学基金(61171179 61227003)
关键词 曲线检测 自适应 FCSS算法 IPCSS算法 拟合法 curve detection self-adaption FCSS algorithm IPCSS algorithm fitting method
  • 相关文献

参考文献16

  • 1孙丰荣,刘积仁.快速霍夫变换算法[J].计算机学报,2001,24(10):1102-1109. 被引量:91
  • 2Chen Telichuan, Chung Kuoliang. An efficient randomized algorithm for detecting circles[J]. Com-puter Vision and Image Understanding, 2001, 83(2): 172-191.
  • 3Song Zhen, Yang-quan Chen, Li-li Ma et al. Some sensing and perception techniques for oinnkli-rectional ground vehicle with a laser scanner[C]// In Proceedings of the 2002 IEEE. InternationalSymposium on Intelligent Control, Vancouver, Canada, 2002: 690-695.
  • 4Yuan Huaqiang,Ye Yangdong,Deng Jianguang,Chai Xiaoguang,Li Yong.A fingerprint feature extraction algorithm based on curvature of Bezier curve[J].Progress in Natural Science:Materials International,2007,17(11):1376-1381. 被引量:5
  • 5Coray C. Clustering algorithms with prototype selection [J]. Proc of Hawaii Int Conf on Syst Sci,1981, 2: 945-955.
  • 6Dave R N. Use of the adaptive fuzzy clustering algorithms to detect lines in digital images[J].Intelligent Robots and Computer, 1989,1192: 600-611.
  • 7Dave R N. Fuzzy shell-clustering and applications to circle detection in digital images[J]. Interna-tional Journal of General Systems, 1990, 16: 343-355.
  • 8Dunn J C. Some recent investigations of a new fuzzy partition algorithms and its application to pattern classification problems[J]. J Cybernet, 1974, 4(1): 1-15.
  • 9Dunn J C. A fuzzy relative of the IOSDATA process and its use in detecting compact well separatedclusters[J]. ,] Cybernet. 1974, 3(1): 32-57.
  • 10Krishnapuram R, Frigui H, Nas raoui O. The fuzzy c-spherical shells algorithms: A new approach[J].IEEE Trans. Neural Network, 1992, 3: 663-671.

二级参考文献49

  • 1KONG Wan-zeng,ZHU Shan-an.Multi-face detection based on downsampling and modified subtractive clustering for color images[J].Journal of Zhejiang University-Science A(Applied Physics & Engineering),2007,8(1):72-78. 被引量:10
  • 2田铮,李小斌,句彦伟.谱聚类的扰动分析[J].中国科学(E辑),2007,37(4):527-543. 被引量:33
  • 3王玲,薄列峰,焦李成.密度敏感的谱聚类[J].电子学报,2007,35(8):1577-1581. 被引量:61
  • 4Hu Z Y,Pattern Recognit Lett,1995年,16卷,385页
  • 5Ho C T,Pattern Recognition,1995年,28卷,1期,117页
  • 6Pan Y,Proc 1990 Int Conference on Parallel Processing,1990年,83页
  • 7Cheng F H,IEEE Trans PAMI,1989年,11卷,4期,429页
  • 8Bach R, Jordan M I. Learning spectral clustering. University of California at Berkeley Technical report UCB/CSD-03-1249.2003
  • 9Xing E P, Jordan M I. On semidefinite relaxation for normalized k-cut and connections to spectral clustering. University of California at Berkeley Technical report UCB/CSD-3- 1265. 2003
  • 10Donath W E, Hoffman A J. Lower bounds for partitioning of graphs. IBM J Res Develop, 1973, 17(5): 420-425

共引文献161

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部