摘要
偏差估计一直是多复变函数研究的热点之一.近几年,双全纯凸(准凸)映照的偏差估计已经被研究人员估计出来,但螺形映照及其子类的偏差估计结果还为数不多.针对这一点,通过使用相对于A的螺形映照的定义及定义中已知的不等式,我们得到了一类相对于A的螺形映照的偏差上界估计.
Distortion estimations have been the focus of the theory of several complex variables. In recent years, some results on the distortion theorems of biholomorphic convex (quasi- convex) have been obtained, but the distortion estimations on some subclasses of spirallike mappings are less. Aiming at this question, By using the definition and inequality known of strongly spirallike mappings relative to A, we deduced that the distortion upper bound for a class of strongly spirallike mappings relative to A.
出处
《数学的实践与认识》
北大核心
2015年第13期238-242,共5页
Mathematics in Practice and Theory
基金
国家自然科学基金(61304061)
关键词
相对于A的螺形映照
不等式
偏差上界
估计
strongly starlike mapping of ordera
growth theorem
distortion theorem