期刊文献+

风险条件下基于收益视角的最优投资决策研究 被引量:4

THE OPTIMAL PORTFOLIO DECISION UNDER RISK BASED ON RETURN
原文传递
导出
摘要 给出了风险条件下基于收益视角的损失最小化投资组合模型.数值试验表明,当投资者预期收益较高时,该模型等价于条件在险价值模型,当投资者满足于较低收益时,该模型优于条件在险价值模型.提出的基于主成分分析的情景生成方法避免了过度分散投资,投资组合模型的最优目标值随情景数目的增加快速趋于收敛;该情景生成方法无需假定随机收益的分布,融合了收益分布的非对称及尖峰等统计特征,主成分分析法的降维优势使该方法也适合于资产数目较大时的情景生成. A portfolio selection model to minimize the expected loss under risk is proposed based on the perspective of return.Numerical analysis shows that this model is equivalent to conditional value-at-risk(CVaR) model when higher target return is required but superior to CVaR with lower target return.A scenario generating approach based on the principle component analysis effectively avoids over-diversified investment and the optimal decision quickly tends to converge along with the increasing scenarios.Without assuming the distribution of the portfolio return,the scenario generating approach considers the asymmetric and lepokurtic characters of the return distribution while the advantage of the principle component analysis to decrease the dimensions makes it possible to generate scenarios when a large number of risky assets are involved in the portfolio.
出处 《系统科学与数学》 CSCD 北大核心 2015年第6期707-716,共10页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(61170107) 河北师范大学自然科学基金(L2011Z12)资助课题
关键词 投资组合选择 情景生成 主成分分析 条件在险价值 Portfolio selection scenario generation principle component analysis conditional value-at-risk
  • 相关文献

参考文献15

  • 1Markowitz H M. Portfolio selection. Journal of Finance, 1952, 7(1): 77 91.
  • 2Markowitz H M. Portfolio Selection: Efficient Diversification of Investment. New York: John Wiley & Sons, 1959.
  • 3Konno H, Yamazaki H. Mean-absolute deviation portfolio optimization model and its application to Tokyo stock market. Management Science, 1991, 37(5): 519-531.
  • 4Fishburn P C. Mean-risk analysis with risk associated with below target returns. American Economical Review, 1977, 67(2): 116-126.
  • 5Konno H, Suzuki K. A mean-variance-skewness optimization model. Journal of the Operations Research Society of Japan, 1995, 38(2): 173-187.
  • 6Philippe J. Value at Risk: The New Benchmark for Controlling Market Risk. Chicago: Irwin Professional Publishing, 1996.
  • 7Rockafellar R T, Uryasev S. Optimization of conditional value-at-risk. The Journal of Risk, 2000, 2(3): 21-42.
  • 8Rockafellax R T, Uryasev S. Rockafellar R T, Uryasev S. Conditional value-at-risk for general loss distributions. Journal of Banking and Finance, 2002, 26(7): 1443-1471.
  • 9Zhu S S, Ji X D, Li D. Robust set-valued scenario approach for handling modeling risk in portfolio optimization, to appear in Journal of Computational Finance, 2015.
  • 10Castellacci G, Siclari M J. The practice of Delta-Gamma VaR: Implementing the quadratic portfolio model. European Journal of Operational Research, 2003, 150(3): 529-545.

同被引文献44

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部