期刊文献+

基于模糊权重相似性的协同过滤算法研究 被引量:3

A Study of Fuzzy Weighted Similarity Measure for Collaborative Filtering Recommender Systems
下载PDF
导出
摘要 在传统协同过滤算法中,相似度直接依据用户评分。但是,用户评分会受各种不确定因素影响。采用数值评分的推荐系统收集到的用户喜好信息是模糊、不精确和不完整的。单一的数值不能包含丰富的信息来表达用户喜好,也会导致推荐结果的不准确性。文中定义了几种模糊集的隶属函数,提出了基于模糊逻辑的相似度计算方法。实验结果表明,基于模糊权重的相似度有效的提高了推荐系统的预测准确度,一定程度上解决了协同过滤算法的可扩展性和数据稀疏性问题。 In the traditional collaborative filtering algorithm,the calculation of similarity is based directly on user ratings,which are subject to uncertain factors,and thus the user preferences information is inaccurate by Numerical rating. This paper defines several membership functions of fuzzy sets and puts forward the similarity calculation method based on fuzzy logic. The experimental results show that the similarity based on fuzzy weight effectively improves the accuracy of the recommendation system.
作者 张雅科
出处 《电子科技》 2015年第7期111-114,共4页 Electronic Science and Technology
关键词 推荐系统 协同过滤 相似度 模糊权重 recommendation system collaborative filtering similarity fuzzy weight
  • 相关文献

参考文献9

  • 1Eppler M J, Mengis J. The concept of information overload : areview of literature from organization science, accounting,marketing,MIS,and related disciplines [ J]. The InformationSociety,2004,20(5) :325 -344.
  • 2Jesus Bobadilla, Fernando Ortega,Antonio Hernando, et al.Improving collaborative filtering recommender system resultsand performance using genetic algorithms [ J]. Knowledge -Based Systems,2011 (24) ; 1310 - 1316.
  • 3Ben Schafer J,Dan Frankowski,Jon Herlocker,et al. Collabo-rative filtering recommender systems [ M]. Heidelberg;Springer Berlin Heidelberg,2007.
  • 4Chih - Fong Tsai,Chihli Hung. Cluster ensembles in collabo-rative filtering recommendation [ J]. Applied Soft Compu-ting,2012( 12) :1417 -1425.
  • 5Cheng Lichen, Wang Huaan. A fuzzy recommender systembased on the integration of subjective preferences and objec-tive information [ J]. Applied Soft Computing, 2014 ( 18 ):290 -301.
  • 6Blerina Lika, Kostas Kolomvatsos, Stathes Hadjiefthymiades.Facing the cold start problem in recommender systems [ J].Expert Systems with Applications,2014,41 (2) :2065 -2073.
  • 7Lii Linyuan,Matu§ Medo,Chi Ho Yeung,et al. Recommendersystems [ J]. Physics Reports,2012,50( 1 ) :1 -49.
  • 8Al - Shamri M Y H,Bharadwaj K K. Fuzzy - genetic ap-proach to recommender systems based on a novel hybrid usermodel [ J]. Expert Systems with Applications,2008,35 (3):1386 -1399.
  • 9Al - Shamri M Y H, Al - Ashwal N H. Fuzzy weighted pear-son correlation coefficient for collaborative recommender sys-tem [C]. Angers:Proceedings of the 15th International Con-ference on Enterprise Information Systems (ICEIS13) ,2013.

同被引文献28

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部