期刊文献+

低信噪比条件下改进ESPRIT方法 被引量:1

The Modified ESPRIT Method Under Low SNR Condition
下载PDF
导出
摘要 在低信噪比时,针对估计信源DOA实时性的问题,提出了一种新的适合于ESPRIT算法的多级维纳滤波器(MSWF)结构,找到了一种能判别信号子空间的方法。首先将多级维纳滤波器(MSWF)与ESPRIT算法相结合,采用多级维纳滤波器(MSWF)的前向递推,得到子空间,不需要通过特征值分解。低信噪比时,针对噪声子空间泄漏到信号子空间的现象,提出一种判别方法,找到了更精确的信号子空间,结合ESPRIT方法实现信号的DOA估计。由于该算法实现了真实的信号子空间的判断,因此,比传统基于MSWF算法具有更高地估计精度。特别是在低信噪比时,增强了算法的实用性,仿真结果证明了算法的有效性。 In low SNR,a new multistage wiener filtering(MSWF)suitable for ESPRIT is proposed for the instant problem among direction-of-arrival(DOA) estimation of signals. Firstly,the MSWF is combined with ESPRIT. Then subspace can be acquired through spatially smoothed forward recursion of the multistage wiener filtering,not through the matrix eigenvalue decomposition. In low SNR,the noise subspace leaked to the signal subspace,a discriminated method is proposed to find a more accurate signal subspace. The DOA of singles can be estimated combining with the subspace kind algorithms such as ESPRIT. Because this algorithm has realized the judgment of the real signal subspace,it has higher estimation precision than the traditional algorithm based on MSWF. Especially in low SNR,enhance the practicability of the algorithm. Simulation results verify that the proposed algorithm is effective.
机构地区 电子工程学院
出处 《火力与指挥控制》 CSCD 北大核心 2015年第6期91-95,共5页 Fire Control & Command Control
关键词 角度估计 低信噪比 低复杂度 信号子空间 DOA estimation low SNR low complexity signal subspace
  • 相关文献

参考文献9

二级参考文献52

  • 1黄磊,吴顺君,张林让,冯大政.快速子空间分解方法及其维数的快速估计[J].电子学报,2005,33(6):977-981. 被引量:44
  • 2丁前军,王永良,张永顺.一种多级维纳滤波器的快速实现算法——迭代相关相减算法[J].通信学报,2005,26(12):1-7. 被引量:10
  • 3丁前军,王永良,张永顺.自适应阵列中多级维纳滤波器的有效实现算法[J].电子与信息学报,2006,28(5):936-940. 被引量:15
  • 4Goldstein J S, Reed I S, Scharf L L. A Multistage representation of the Wiener filter based on orthogonal projection [J].IEEE Transactions on Information Theory, 1998, 44(7): 2 943-2 959.
  • 5Hiemstra J D, Goldstein J S. Robust rank selection for the multistage Wiener filter[C]//Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing. INSPEC, 2002, 3: 2 929-2 932.
  • 6Yang B. Projection approximation subspace tracking [J]. IEEE Transactions on Signal Processing, 1995, 43(1) : 95-107.
  • 7G0lubGH,vanLoanCF.矩阵计算[M].袁亚湘等译,北京:科学出版社,2001.
  • 8[1]Pisarenko V F.The retrieval of harmonics from a Covariance function[J].Geophysieal Journal Royal of Astronomical Society,1973,33(3):347-366.
  • 9[2]Schmidt R O.Multiple emitter location and signal parameter estimation[J].IEEE Trans,1986,34(3):276-280.
  • 10[3]Roy R,Kailath T.ESPRIT-estimation of signal parameters via rotational invariance techniques[J].IEEE Tram,1989,37(7):984-995.

共引文献47

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部