期刊文献+

基于鲁棒高阶条件随机场的视频自动分割 被引量:1

Automatic Video Segmentation Based on Robust Higher Order Conditional Random Field
下载PDF
导出
摘要 针对交互式分割方法存在用户标注繁琐和过分割现象,以及仅考虑二元项不能获得图像中准确的物体边界等问题,结合鲁棒高阶条件随机场,提出一种视频自动分割方法。采用基于超像素显著性特征的分割方法对视频初始帧进行自动分割,其结果作为初始化种子建立模型。根据颜色信息设计高斯混合模型,基于纹理、形状等特征,利用联合Boosting算法训练Jointboost强分类器模型,通过条件随机场提高分割准确度。引入基于超立体像素的高阶项,增加像素与区域的关联,提高分割边界的平滑度。实验结果表明,该方法明显地提高了分割效果。 This paper presents an automatic video segmentation method based on robust higher order Conditional Random Field(CRF) ,which alleviates the problem that interactive segmentation is time-consuming and labor-intensive, and oversegmentation is generated in unsupervised segmentation, and simple pairwise-pixel segmentation cannot get accurate boundary. It utilizes the saliency based segmentation of the first frame of video as initial seeds instead of user labeling. The Gaussian mixture model and a strong jointboost classifier model are respectively learned on the features of color,texture and shape, the combination of both in CRF improves the accuracy of segmentation. It adds higher order potential based on supervoxel to solve the shortcoming of oversmoothing of pairwise-pixel segmentation. Experimental results demonstrate that the method is more effective and efficient than the state-of-art methods.
出处 《计算机工程》 CAS CSCD 北大核心 2015年第7期261-268,共8页 Computer Engineering
基金 国家自然科学基金资助项目(61175026) 宁波市自然科学基金资助项目(2014A610031 2014A610032) "信息与通信工程"浙江省重中之重学科开放基金资助项目(xkxl1426) 宁波大学胡岚优秀博士基金资助项目(ZX2013000319) 宁波大学人才工程基金资助项目(20111537)
关键词 视频自动分割 高阶势 超立体像素 条件随机场 双模型融合 特征融合 automatic video segmentation higher order potential supervoxel Conditional Random Field (CRF) double model fusion feature fusion
  • 相关文献

参考文献23

  • 1Price B L,Morse B S,Coheb S.LIVEcut:Learningbased Interactive Video Segmentation by Evaluation of Multiple Propagated Cues[C]//Proceedings of International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2009:779-786.
  • 2Bai Xue,Wang Jue,Simons D,et al.Video Snap Cut:Robust Video Object Cutout Using Localized Classifiers[J].ACM Transactions on Graphics,2009,28(3):1-11.
  • 3Zhong Fan,Qin Xueying,Peng Qunsheng,et al.Discontinuity-aw are Video Object Cutout[J].ACM Transactions on Graphics,2012,31(6):1-10.
  • 4吴琳,李海燕.面向生物医学图像的交互式分割算法[J].计算机工程,2010,36(16):208-209. 被引量:3
  • 5Zhang Dong,Javed O,Shah M.Video Object Segmentation Through Spatially Accurate and Temporally Dense Extraction of Primary Object Regions[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2013:628-635.
  • 6Lee Y J,Kim J,Grauman K.Key-segments for Video Object Segmentation[C]//Proceedings of International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2011:1995-2002.
  • 7郭宝龙,侯叶.基于图切割的图像自动分割方法[J].模式识别与人工智能,2011,24(5):604-609. 被引量:7
  • 8Boykov Y Y,Jolly MP.Interactive Graph Cuts for Optimal Boundary and Region Segmentation of Objects in ND Images[C]//Proceedings of International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2001:105-112.
  • 9Blake A,Rother C,Brown M,et al.Interactive Image Segmentation Using an Adaptive GMMRF Model[M].Berlin,Germany:Springer,2004.
  • 10Rother C,Kolmogorov V,Blake A.Grabcut:Interactive Foreground Extraction Using Iterated Graph Cuts[J].ACM Transactions on Graphics,2004,23(3):309-314.

二级参考文献18

  • 1段华,汤春明.基于区域生长的生物图像分割方法[J].仪器仪表用户,2007,14(3):97-98. 被引量:2
  • 2肖超云,朱伟兴.基于Otsu准则及图像熵的阈值分割算法[J].计算机工程,2007,33(14):188-189. 被引量:54
  • 3Otsu N.A Threshold Selection Method from Gray-level Histo-grams[J].IEEE Trans.on System,Man,and Cybernetics,1979,9(1):62-66.
  • 4Kapur J N,Sahoo P K,Wong A K C.A New Method for Gray-level Picture Threshold Using the Entropy of the Histogram[J].Computer Vision,Graphics,and Image Processing,1985,29(3):273-285.
  • 5Adams R,Bischof L.Seeded Region Growing[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,1994,16(6):641-647.
  • 6Mencattini A,Rabottino G,Salmeri M,et al.Breast Mass Segmentation in Mammography Images by an Effective Region Growing Algorithm[C] //Proc.of Advanced Concept for Intelligent Vision Systems Conference.Heidelberg,Germany:Springer-Verlag,2008.
  • 7Boykov Y, Jolly M P. Interactive Graph Cuts for Optimal Boundary and Region Segmentation of Objects in N-D Images // Proc of the IEEE International Conference on Computer Vision. Vancouver, Canada, 2001 : 105 - 112.
  • 8Rother C, Kolmogorov V, Blake A. GrabCut: Interactive Foreground Extraction Using Iterated Graph Cuts. ACM Trans on Graphics, 2004, 23(3) : 309 -314.
  • 9Sumengen B, Manjunath B S. Graph Partitioning Active Contours (GPAC) for Image Segmentation. IEEE Trans on Pattern Analysis and Machine Intelligence, 2006, 28(4) : 509 -521.
  • 10Greig D M, Porteous B T, Seheult A H. Exact Maximum a Posteriori Estimation for Binary Images. Journal of the Royal Statistical Socie- ty: Series B, 1989, 51(2): 271 -279.

共引文献8

同被引文献18

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部