期刊文献+

基于最小描述长度的图分割变化检测改进算法

Improved Algorithm of Graph Partitioning Change Detection Based on Minimum Description Length
下载PDF
导出
摘要 图分割变化检测(GPCD)可检测出可能导致网络社区发生变化的重要事件。针对现有的检测算法未考虑图形分割结构动态特点的不足,利用概率树表示图分割结构的概率模型,将GPCD问题转化为基于最小描述长度的树变化检测问题,并提出一种求解GPCD问题的Tree算法。仿真实验结果表明,与Graph Scope基准算法相比,该算法检测图分割结构变化时的虚警率较低,并具有较高的检测精度。 Graph Partitioning Change Detection (GPCD) problem is important in that it leads to discovery of important events which cause changes of network communities. Aiming at the disadvantages that the existing detecting algorithms do not consider dynamic graph partitioning structures,it employs probabilistic trees to represent probabilistic models of graph partitioning structures, and reduces GPCD into the issue of detecting changes of trees on the basis of the Minimum Description Length (MDL) principle, and proposes Tree algorithm for solving the GPCD problem. Simulation experimental results show that the algorithm realizes significantly less False Alarm Rate(FAR) for change detection than the baseline method called GraphScope. And it is able to detect changes more accurately than GraphScope.
出处 《计算机工程》 CAS CSCD 北大核心 2015年第7期274-279,284,共7页 Computer Engineering
基金 河南省科技攻关计划基金资助项目(122102210430)
关键词 图分割变化检测 最小描述长度 概率树 变化成本 虚警率 Graph Partitioning Change Detection (GPCD) Minimum Description Length (MDL) probabilistic tree cost of change False Alarm Rate (FAR)
  • 相关文献

参考文献14

  • 1文政颖,于海鹏.基于多Gamma分布模型的SAR图像直方图分割算法[J].计算机工程与设计,2014,35(6):2104-2108. 被引量:11
  • 2汪云飞,毕笃彦,孙毅,孙超,南栋.一种采用双势阱策略的小直径图分割方法[J].计算机应用与软件,2013,30(4):275-278. 被引量:3
  • 3Stanton I,Kliot G.Streaming Graph Partitioning for Large Distributed Graphs[C]//Proceedings of the 18th ACM SIGKDD International Conference on Know ledge Discovery and Data Mining.New York,USA:ACM Press,2012:1222-1230.
  • 4Bansal N,Feige U,Krauthgamer R,et al.Min-max Graph Partitioning and Small Set Expansion[J].SIAM Journal on Computing,2014,43(2):872-904.
  • 5Nishimura J,Ugander J.Restreaming Graph Partitioning:Simple Versatile Algorithms for Advanced Balancing[C]//Proceeding s of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.Chicago,USA:ACM Press,2013:1106-1114.
  • 6López-Ruiz R,Sanudo J,Romera E,et al.Statistical Complexity and Fisher-shannon Information:Applications[M].Berlin,Germany:Springer,2011.
  • 7Silva T C,Zhao L.Stochastic Competitive Learning in Complex Netw orks[J].IEEE Transactions on Neural Netw orks and Learning Systems,2012,23(3):385-398.
  • 8Chakrabarti D,Papadimitriou S,Modha D S,et al.Fully Automatic Cross-associations[C]//Proceedings of the10th ACM SIGKDD International Conference on Know ledge Discovery and Data Mining.New York,USA:ACM Press,2012:79-88.
  • 9Chakrabarti D.Autopart:Parameter-free Graph Partitioning and Outlier Detection[C]//Proceedings of PKDD’04.Berlin,Germany:Springer,2004:112-124.
  • 10Sun J,Faloutsos C,Papadimitriou S,et al.Graphscope:Param eter-free Mining of Large Tim e-evolving Graphs[C]//Proceedings of the 13th ACM SIGKDD International Conference on Know ledge Discovery and Data Mining.San Jose,USA:ACM Press,2007:687-696.

二级参考文献22

  • 1Nikhil R Pal, Sankar K Pal. A Review on Image Segmentation Tech- niques[ J]. Pattern Recognition, 1993,26 (9), 1277 - 1294.
  • 2Reinhard Diestel. Graph Theory[ M ]. 4th ed. German : springer - ver- lag, 2010:451-471.
  • 3Camille Couprie, Leo grady. Power Watersheds : A New Image Segmen- tation Framework Extending Graph Cuts, Random Walker and Optimal Spanning Forest [ C ]//Proceedings of the 12^th International Conference on Computer Vision(ICCV). Kyoyo: IEEE Inc,2009:731 -738.
  • 4Chen M, Liu M, Liu J. Isoperimetrie Cut on A Directed Graph[C]// Proceedings of 2010 Computer Vision and Pattern Recognition (CVPR). San Francisco: IEEE Inc, 2010:2109-2116.
  • 5Shi J, Malik J. Normalized Cuts and Image Segmentation [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22 ( 8 ) : 888 - 905.
  • 6Grady L, Schwartz E L. Isoperimetric Graph Partitioning for Image Segmentation[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(3 ): 469-475.
  • 7Watts D J. Small worlds:The dynamics of networks between order and randomness[ M]. Princeton studies in complexity. Princeton Universi- ty Press, Princeton,N. J,2003.
  • 8Chen Weita, Liu Weichuan, Chen Mingsyan. Adaptive Color Featutre Extraction Based on Image Color Distributions[ J]. IEEE Transactions on Image Processing, 2010,19( 8 ) :2005 -2016.
  • 9Ning Jifeng, Zhang Lei, David Zhang. Robust object Tracking Using Joint Color-Texture Histogram [ J ]. Pattern Recognition and Artificial Intelligence, 2009,23 ( 7 ) : 1245 - 1263.
  • 10李军侠,水鹏朗.基于广义高斯最大似然估计的小波域类LMMSE滤波算法[J].电子与信息学报,2007,29(12):2853-2857. 被引量:5

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部