期刊文献+

快速磁响应光子晶体的研究进展 被引量:4

Research progress in magnetic-response-based photonic crystals
下载PDF
导出
摘要 响应性光子晶体是由不同介质周期性排列组成的带隙介质材料,其中磁响应光子晶体因为能将外界磁场强弱变化快速表达为光学信号而在近几年发展迅速。本文从理论到具体工作综合论述了快速磁响应光子晶体的研究进展。首先基于布拉格衍射定律介绍了磁响应光子晶体在外部磁场的作用下产生光子带隙的原理,然后系统总结了该类光子晶体的不同合成途径,并在其能快速响应的基础上从稳定效果、形态尺寸控制和带隙分布等方面进行了综合分析,最后从应用上探讨了具有快速磁响应特性的光子晶体对于传感器、防伪、彩色印刷等领域的潜力。 Responsive photonic crystals are dielectric materials which are periodic arrangement of different mediums,among which magnetically responsive photonic crystals(MRPCs) are developing fast in recent years because of their rapid response to the change of external magnetic field and transform into optical signal. This paper presented the research progress in MRPCs. Firstly,the principle of photonic band gap produced by MRPCs under the effect of external magnetic field is described on the basis of Bragg's law. Secondly,different synthetic pathways for fast MRPCs are concluded. On the basis of rapid responsive MRPCs,this paper conducted a comprehensive analysis in various aspects,such as the stabilizing effect,controlling and influencing the shape size and band gap distribution. Finally,it also discussed potential applications of MRPCs in sensors,security,color printing and other areas.
出处 《化工进展》 EI CAS CSCD 北大核心 2015年第7期1913-1918,共6页 Chemical Industry and Engineering Progress
基金 高等学校博士学科点专项科研基金项目(20120143110002)
关键词 纳米粒子 胶体 还原 粒子形成 光子晶体 自组装 传感 nanoparticles colloid reduction particle formation photonic crystals self-assembly sensor
  • 相关文献

参考文献51

  • 1Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 1987, 58(20):2059.
  • 2John S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 1987, 58(23):2486.
  • 3Wang H, Chen Q W, Sun Y B, et al. Synthesis of necklace-like magnetic nanorings[J]. Langmuir, 2010, 26(8):5957-5962.
  • 4Zhang B, Zhang H, Fan X, et al. Preparation of thermoresponsive Fe3O4/p(acrylic acid-methyl methacrylate-n-isopropylacrylamide) magnetic composite microspheres with controlled shell thickness and its releasing property for phenolphthalein[J]. Journal of Colloid and Interface Science, 2013, 398:51-58.
  • 5Wang H, Chen Q W, Sun L X, et al. Magnetic-field-induced formation of one-dimensional magnetite nanochains[J]. Langmuir, 2009, 25(12):7135-7139.
  • 6Zhu C, Xu W, Chen L, et al. Magnetochromatic microcapsule arrays for displays[J]. Advanced Functional Materials, 2011, 21(11):2043-2048.
  • 7段涛,彭同江,唐永建.ZnS-opal与反opal结构ZnS光子晶体的组装[J].化工进展,2009,28(8):1405-1409. 被引量:1
  • 8Kubo S, Gu Z Z, Takahashi K, et al. Control of the optical properties of liquid crystal-infiltrated inverse opal structures using photo irradiation and/or an electric field[J]. Chemistry of Materials, 2005, 17(9):2298-2309.
  • 9Xu X, Friedman G, Humfeld K D, et al. Synthesis and utilization of monodisperse superparamagnetic colloidal particles for magnetically controllable photonic crystals[J]. Chemistry of Materials, 2002, 14(3):1249-1256.
  • 10Ge J, He L, Hu Y, et al. Magnetically induced colloidal assembly into field-responsive photonic structures[J]. Nanoscale, 2011, 3(1):177-183.

二级参考文献15

  • 1丛海林,曹维孝.二氧化硅胶体晶体及其为模板的多孔材料[J].高等学校化学学报,2005,26(3):535-539. 被引量:14
  • 2Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronic[J]. Phys. Rev. Lett., 1987, 58: 2059-2061.
  • 3John S. Strong localization of photons in certain disordered dielectric superlattices[J]. Phys. Rev. Lett., 1987, 58: 2486-2489.
  • 4Geoffrey I N, Waterhouse, Mark R Waterland. Opal and inverse opal photonic crystals: Fabrication and characterization [J]. Polyhedron, 2007, 26: 356-368.
  • 5Thomas F Krauss, Richard M, de La Rue. Photonic crystals in the optical regime--past, present and future[J]. Progress in Quantum Electronics, 1999, 23:51-96.
  • 6Noda S, Yamamoto N, Chutinan A, et al. Optical properties of three-dimensional photonic crystals based on III-V semiconductors at infrared to near-infrared wave- lengths[J]. Appl. Phys. Lett., 1999, 75: 905-907.
  • 7Amendt Peter, Cerjan C, HamzaA, et al. Assemssing the prospects for achieving double-shell ignition on the National ignition facility using vacuum hohlraums[J]. Physics of Plasmas, 2007, 14: 56312.
  • 8Norris David J. Photonic crystals a view of future[J]. Nature Materials, 2007, 6: 177-178.
  • 9Wijngoven J E G J, Vos W L. Preparation of photonic crystals made of air spheres in titania[J]. Science, 1998, 281: 802-804.
  • 10King J S, Neff C W, Summers C J, et al. High fiUing fraction inverted ZnS opals fabricated by atomic layer deposition[J]. Appl. Phys. Lett., 2003, 83: 2566-2568.

同被引文献17

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部