摘要
本文建立了贝叶斯模型,讨论了帕累托索赔额分布中参数的估计问题,得到了风险参数的极大似然估计、贝叶斯估计和信度估计,并证明了这些估计的强相合性.在均方误差的意义下比较了这些估计的好坏,并通过数值模拟对均方误差进行了验证,结果表明,贝叶斯估计比其他估计具有较小的均方误差.最后,给出了结构参数的估计并证明了经验贝叶斯估计和经验贝叶斯信度估计的渐近最优性.
The Bayesian model is established in this paper, and the risk parameters of claim amounts in Pareto distribution are estimated. The maximum likelihood estimation, Bayesian estimation and credibility estimation are derived and the strong consistency of these estimates are proved. We also compared their mean. square error both in theory and in numerical simulation. The results show that Bayesian estimation is better than other estimates in sense of mean square error. Finally, the structural parameters in Bayes estimation and credibility estimation are estimated and the corresponding empirical Bayes estimates are proved asymptotically optimal.
出处
《应用概率统计》
CSCD
北大核心
2015年第3期225-237,共13页
Chinese Journal of Applied Probability and Statistics
基金
国家自然科学基金(71361015)
中国博士后基金面上资助项目(2013M540534)
中国博士后基金特别资助项目(2014T70615)
江西省博士后择优项目(2013KY53)
江西省自然科学基金(20142BAB201013)资助
关键词
帕累托分布
经验贝叶斯估计
渐近最优
信度估计
Pareto distribution, empirical Bayes estimators, asymptotical optimality, credibility estimator.