摘要
设f_n是基于一个核函数K和取值于R^d的独立同分布随机变量列的一个非参数核密度估计.本文推广了在He和Gao(2008)中相应大偏差的结果,即证明统计量sup x∈Rd|f_n(x)-f_n(-x)|的大偏差.
Let fn be a non-parametric kernel density estimator based on a kernel function K and a sequence of independent and identically distributed random variables taking values in R^d. The goal of this article is to extend the large deviations results in He and Gao (2008), i.e., to prove large deviations for the statistic sup x∈R^d|fn(x)-fn(-x)|.
出处
《应用概率统计》
CSCD
北大核心
2015年第3期238-246,共9页
Chinese Journal of Applied Probability and Statistics
基金
supported by Natural Science Foundation of Jiangxi Province of China(20122BAB201016,20132BAB201017)
关键词
对称检验
核密度估计
大偏差
Symmetry test, kernel density estimator, large deviations.