期刊文献+

桥梁墩柱抗震能力及影响因素对比研究 被引量:2

Comparative Research on Anti-seismic Capability and Its Influencing Factors of Bridge Columns
下载PDF
导出
摘要 针对典型梁桥墩柱的抗震能力及其影响因素展开对比研究。根据材料非线性本构关系建立墩柱塑性铰区截面的弯矩-曲率关系,分析轴压比、纵筋率、配箍率等对墩柱抗弯能力和延性的影响。基于AASHTO、CALTRANS、ATC-32、抗震细则等规范对墩柱的抗剪能力、塑性铰转动能力进行对比研究。结果表明:增大轴压比和纵筋率均可提高墩柱的抗弯能力,但都会降低墩柱的延性;提高配箍率可有效地增强墩柱的抗弯能力和延性,但增幅随配箍率的提高而趋缓;抗震细则中有关墩柱抗剪和转动能力的公式过于保守,普遍远低于其他规范的计算值。 In this paper,the anti- seismic capacity and its influencing factors are investigated for the typical bridge columns. The nonlinear constitutive relationships of materials are used to establish the moment- curvature relationships of the column plastic hinge region. Effects of axial compression ratio,longitudinal reinforcement ratio,and transverse reinforcement ratio are examined on the flexural capacity and ductility of the column. Following the codes of AASHTO,CALTRANS,ATC- 32 and guidelines for seismic design of highway bridges,the shearing resistance capacity and the rotational capacity of the plastic hinge are compared for the column. The results show that the increase of axial compression ratio and longitudinal reinforcement ratio will increase the flexural capacity of the column,but will decrease the column ductility. Increase of the transverse reinforcement ratio can effectively increase the flexural capacity and the ductility of the column,and the increase is getting slower while the transverse reinforcement ratio is reaching higher. The method provided in the guidelines for seismic design of highway bridges for calculating the shear resistance capacity and the rotational capacity of the column is shown to be too conservative,whose calculation values are much lower than those of other codes.
出处 《西华大学学报(自然科学版)》 CAS 2015年第4期102-108,共7页 Journal of Xihua University:Natural Science Edition
基金 交通运输部应用基础研究计划项目(2014319814210) 山区桥梁与隧道工程国家重点实验室培育基地开放基金(CQSLBF-Y14-2) 重庆交通大学校内青年科学基金(101293)
关键词 梁桥墩柱 抗震能力 弯矩-曲率 抗剪 塑性铰 bridge column anti-seismic capacity moment-curvature shear resistance plastic hinge
  • 相关文献

参考文献10

  • 1叶爱君,管仲国,范立础.桥梁抗震[M].2版.北京:人民交通出版社,2011.
  • 2Priestley M J N, Seible F, Calvi G M. Seismic Design and Ret- rofit of Bridges [ M]. New York: Wiley Interscience, 1995.
  • 3刘健新,赵国辉.“5·12”汶川地震典型桥梁震害分析[J].建筑科学与工程学报,2009,26(2):92-97. 被引量:42
  • 4薛瑞杰,袁万城.国内外桥梁延性抗震构造设计比较[J].工程抗震与加固改造,2009,31(2):1-8. 被引量:12
  • 5朱晞,弓俊青.钢筋混凝土桥梁延性抗震设计的研究及发展[J].桥梁建设,2000,30(1):1-5. 被引量:9
  • 6Priestley M J N. Brief Comments on Elastic Flexibility of Rein- forced Concrete Frames and Significance to Seismic Design [ J ], Bulletin of the New Zealand National Society for Earthquake Engineering, 1998, 31(4) : 246 -259.
  • 7AASHTO. AASHTO LRFD Bridge Design Specifications [ S]. Washington, DC : American Association of State Highway and Transporta- tion Officials, 2004.
  • 8CALTRANS. SDC Cahrans Seismic Deisgn Criteria version 1. 7 [ S]. Sacramento, California : California Department of Transportation, 2013.
  • 9ATC - 32. Improved Seismic Design Criteria of California Bridges [ S ]. Redwood City, California: Applied Technology Counci}, 1996.
  • 10中华人民共和国交通运输部.JTG/TB02-01-2008公路桥梁抗震设计细则[S].北京:人民交通出版社,2008.

二级参考文献19

共引文献105

同被引文献10

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部