摘要
对任意的正整数n,著名的伪Smarandache函数Z(n)定义为最小的正整数m使得n|m(m+1)/2,即Z(n)=min{m:n|m(m+1)/2,m N}.对任意的正整数n,算术函数Ω(n)定义Ω(1)=0,当n>1且n=p1α1·p2α2...pkαk为n的标准分解式时,Ω(n)=α1p1+α2p2+…+αkpk.利用初等方法和解析方法研究了伪Smarandache函数Z(n)与算术函数Ω(n)的混合均值问题,并得到一个较强的渐近公式.
For any positive integer n,the famous Pseudo-Smarandache function Z( n) is defined as the smallest positive integer m such that n | m( m + 1) /2,that is Z( n) = min{ m: n} m( m + 1) /2,m N}. And for any positive integer n,the arithmetical function Ω( n) is defined as Ω( 1) = 0,if n〉1 and n = p1α1·p2α2... pkαkbe the factorization of n into prime powers,Ω( n) = α1p1+ α2p2+ … + αkpk. The elementary method and analytic method were performed to study the hybrid mean value problem involving the Pseudo-Smarandache function Z( n) and the arithmetical function Ω( n),and a shaper asymptotic formula was proposed.
出处
《海南大学学报(自然科学版)》
CAS
2015年第2期97-99,共3页
Natural Science Journal of Hainan University
基金
陕西省科技厅科学技术研究发展计划项目(2013JQ1019)
延安大学校级科研计划项目-引导项目(YD2014-05)
延安大学研究生教育创新计划项目