期刊文献+

基于MCMC的分位回归GARCH模型的贝叶斯分析

Bayesian Analysis of Quantile GARCH Models Based on MCMC Algorithm
下载PDF
导出
摘要 基于最小一乘方法提出了一类分位回归GARCH模型的2步估计方法,并且基于双指数分布和非对称Laplace分布构建了GARCH模型的似然函数,选择扩散先验分布,实现了对模型的贝叶斯估计.仿真分析发现基于最小一乘方法的贝叶斯分位回归方法可以全面有效地实现对GARCH模型的估计. In the report,based on least absolute deviation,the two step estimation method for GARCH models using quantile regression was proposed,and based on double exponential distribution and asymmetric Laplace distribution,the likelihood function of GARCH model was constructed,dispersion and prior distribution was selected,and Bayes estimation for model was achieved. The simulation results showed that Bayes quantile regression estimation is effective to achieve the estimation for GARCH model.
出处 《海南大学学报(自然科学版)》 CAS 2015年第2期120-124,共5页 Natural Science Journal of Hainan University
基金 国家自然科学基金青年项目(41301421)
关键词 贝叶斯 分位数 GARCH模型 经济波动 Bayesian Quantile GARCH models economic volatility
  • 相关文献

参考文献13

  • 1Engle R E. Autoregressive conditional heteroskedasticity with estimates of the variance of UK inflation [ J ]. Econometrica, 1982 50:987 - 100 8.
  • 2Taylor S. Modeling Financial Time Series[ M]. [ S. 1. ] :John Wiley & Sons, 1986.
  • 3Schwert G W. Why does stock market volatility change over time? [ J]. Journal of Finance, 1989, 44:1 115 - 1 154.
  • 4Nelson D, Foster D. Asymptotic filtering theory for univariate ARCH models [ J ]. Econometrics, 1994,62 : 1 - 42.
  • 5Koenker R. Zhao Q. L-estimation for linear heteroscedastic models [ J 1. Journal of Nonparametric Statistics, 1994,3:223 -235.
  • 6Koenker R, Zhao Q. Conditional quantile estimation and inference for ARCH models[J]. Econometric Theory, 1996,12:793 - 813.
  • 7Park B, J. Asymmetric volatility of exchange rate returns under the EMS: some evidence from quantile regression appoach for TGARCH models[ J]. International Economic Journal, 2002, 16( 1 ) : 105 -125.
  • 8Xiao Z, Koenker R. Conditional quantile estimation for generalized autoregressive conditional heteroscedasticity models [ J ]. Journal of the American Statistical Association, 2009,104 (488) : 1 696 - 1 712.
  • 9Chen C W S, Gerlach R, Wei D C M. Bayesian causal effects in quantiles: accounting for heteroscedasticity [ J ]. Computa- tional Statistics & Data Analysis, 2009,53 : 1 993 - 2 007.
  • 10Bollerslev T. Generalized autoregressive conditional heteroskedasticity[ J]. Journal of Econometrics, 1986,31:307 -327.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部