期刊文献+

聚类集成时机的确定

Occasion Determination of Clustering Ensemble
下载PDF
导出
摘要 使用集成学习技术可以提高聚类性能。在实验中发现,当各聚类成员聚类迭代到中后期时进行集成所得的结果会优于其迭代完全停止时进行集成所得的结果。利用集成网络泛化能力的偏差-方差分解理论对聚类集成过程中的上述现象进行解释,将提高集成网络间泛化能力的早期停止准则应用于聚类集成过程,并提出聚类集成时机的概念。对比实验表明,基于早期停止准则的聚类集成得到的结果较好,且更节约聚类集成的时间,为寻求聚类集成的最佳时机提供了可行性建议和方法。 Ensemble learning technique may improve the clustering performance.In the experiment,we discovered that combining the mid-to-late solutions of cluster members in different initial conditions probably get the better ensemble results than combining the end ones.We used the bias/variance trade-off of generalization ability in ensemble network to explain this phenomenon,applied the early stopping rules to the clustering ensemble and proposed the concept of clustering ensemble occasion.The experimental results show that the performance of clustering ensemble based on the early stopping rules is superior to that based on the end solutions of cluster members,while the former takes less time,thus giving some useful suggestions for seeking the best clustering ensemble occasion.
出处 《计算机科学》 CSCD 北大核心 2015年第7期48-51,84,共5页 Computer Science
基金 国家自然科学基金(61170111 61134002) 西南交通大学牵引动力国家重点实验室自主研究课题(2012TPL_T15)资助
关键词 聚类集成 集成时机 泛化能力 早期停止准则 Clustering ensemble Ensemble occasion Generalization ability Early stopping rules
  • 相关文献

参考文献13

  • 1Han Jia-wei, Kamber M, Pei J. Data Mining Concepts and Tech- niques [M]. Beijing: China Machine Press, 2012.
  • 2郭鹏飞,刘万军,林琳,赵永刚,闵亮.结合随机游走与FCM的脑图像分割方法[J].计算机科学,2014,41(7):322-324. 被引量:3
  • 3吕明磊,刘冬梅,曾智勇.一种改进的K-means聚类算法的图像检索方法[J].计算机科学,2013,40(8):285-288. 被引量:18
  • 4Strehl A, Ghosh J. Cluster ensembles-A knowledge reuse frame- work for combining partitionings[J]. Journal of Machine Lear- ning Research, 2002,3 : 583-617.
  • 5Fred A,Jain A K. Data clustering using evidence accumulation [C]//Proceedings of the 17th International Conference on Pat- tern Recognition. 2002 : 276-280.
  • 6Zhou Z H, Tang W. Cluster ensemble [J]. Knowledge-Based Systems,2006,19(1) : 77-83.
  • 7Lu X Y,Yang Y,Wang H J, Selective clustering ensemble based on covariance[C]//Proceedings of the llth Intematiortal Work- shop on Multiple Classifier Systems, 2013. LNCS, 2013, 7872: 179-189.
  • 8罗会兰,孔繁胜,李一啸.聚类集成中的差异性度量研究[J].计算机学报,2007,30(8):1315-1324. 被引量:36
  • 9Krogh A, Vedelsby J. Neural network ensembles, cross valida- tion, and active learning[C]//Proceedings of NIPS94-Neural In-formation Processing Systems: Natural and Synthetic, 1994. Ad- vances in Neural Information Processing Systems 7, MIT Press, 1995:231-238.
  • 10Lodwich A, Rangoni Y, Breuel T. Evaluation of robustness and performance of early stopping rules with multilayer perceptrons [C]//Proceedings of the 2009 International Joint Conference on Neural Networks. 2009 : 1877-1884.

二级参考文献73

共引文献170

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部