期刊文献+

三值量子基本门及其对量子Fourier变换的电路实现 被引量:2

Three-valued Quantum Elementary and Implementation of Quantum Fourier Transform Circuit
下载PDF
导出
摘要 理论上可以把量子基本门组合在一起来实现任何量子电路和构建可伸缩的量子计算机。但由于构建量子线路的量子基本门数量庞大,要正确控制这些量子门十分困难。因此,如何减少构建量子线路的基本门数量是一个非常重要和非常有意义的课题。提出采用三值量子态系统构建量子计算机,并给出了一组三值量子基本门的功能定义、算子矩阵和量子线路图。定义的基本门主要包括三值量子非门、三值控制非门、三值Hadamard门、三值量子交换门和三值控制CRk门等。通过把量子Fourier变换推广到三值量子态,成功运用部分三值量子基本门构建出能实现量子Fourier变换的量子线路。通过定量分析发现,三值量子Fourier变换的线路复杂度比二值情况降低了至少50%,表明三值量子基本门在降低量子计算线路复杂度方面具有巨大优势。 In theory,quantum elementary gates can be put together to implement any quantum circuit and build a scalable quantum computer.Because the number of quantum elementary gates required to build quantum logic circuits is too large,exactly controlling them is not easy.Therefore,how to reduce the number of quantum elementary gates to build quantum circuits is a very important and significant topic.Three-level quantum system was proposed to build quantum computer in this paper,and a set of three-valued quantum elementary gates were defined,including function,operator matrix,quantum circuit diagram.These elementary gates mainly include three-valued quantum NOT gate,three-valued quantum controlled-NOT gate,three-valued Hadamard gate,three-valued quantum SWAP gate and three-valued CRk gate and so on.This paper extended the quantum Fourier transform(QFT)to three-valued quantum states,and quantum circuits were successfully built to implement QFT with partial three-valued quantum elementary gates.By the quantitative analysis,the complexity of three-valued QFT circuit is lower than two-valued case at least 50%.The result indicates that the three-valued quantum elementary gates have a huge advantage in respect of reducing the circuit complexity about quantum computation.
出处 《计算机科学》 CSCD 北大核心 2015年第7期57-61,共5页 Computer Science
基金 国家自然科学基金项目(61272175) 四川省科技厅项目(2012JY009) 四川省教育厅重点项目(2011ZA173)资助
关键词 量子计算 三值量子基本门 量子Fourier变换 量子电路综合 Quantum computation Three-valued quantum elementary gates Quantum Fourier transform Synthesis of quantum circuit
  • 相关文献

参考文献12

  • 1Landauer R. Irreversibility and heat generation in the computing process[J]. IBM journal of research and development, 1961,5 (3):183-191.
  • 2Feynman R P. Simulating physics with computers[J]. Interna- tional Journal of Theoretical Physics, 1982,21 (6) : 467-488.
  • 3Deutseh D. Quantum theory, the Church-Turing principle and the universal quantum computer[J]. Proceedings of the Royal Society of London, A Mathematical and Physical Sciences, 1985, 400(1818) : 97-117.
  • 4Deutsch D. Quantum computational networks[J]. Proceedings of the Royal Society of London. m. Mathematical and Physical Sci- ences, 1989,425(1868) :73-90.
  • 5Muthukrishnan A, Stroud Jr C R. Multivalued logic gates for quantum computation[J]. Physical Review A, 2000,62 (5).
  • 6Di Y M,Wei H R. Elementary gates for ternary quantum logic circuit[J], arXiv preprint arXiv, 1105. 5485,2011.
  • 7Yang G, Song X, Perkowski M, et al. Realizing ternary quantum switching networks without ancilla hits[J]. Journal of Physics A: Mathematical and General, 2005,38(44) : 9689-9697.
  • 8Yang G, Xie F, Song X, et al. Universality of 2-qudit ternary re- versible gates[J]. Journal of Physics A: Mathematical and Gener- al, 2006,39 (24) : 7763-7773.
  • 9Di Y M,Wei H R. Synthesis of multivalued quantum logic circuits by elementary gates[J]. Physical Review A, 2013,87 (1) : 1-9.
  • 10Klimov A B,Guzman R,Retamal J C,et al. Qutrit quantum computer with trapped ions [J]. Physical Review A, 2003, 67 (6) :235-238.

同被引文献19

  • 1任彦,张思东,张宏科.无线传感器网络中覆盖控制理论与算法[J].软件学报,2006,17(3):422-433. 被引量:156
  • 2FAN Fu-you, YANG Guo-wu, YANG Gang, et al. A synthesis method of quantum reversible logic circuit based on elementary qutrit quantum logic gates[J]. Journal of Circuits, Systems and Computers, 2015, 24(8): 1550121-1-20.
  • 3HAN K H,KIM J H. Quantum-inspired evolutionary algorithm for a class of combinational optimization[J]. IEEE Transactions on Evolutionary Computing, 2002, 6(6): 580-593.
  • 4HAN K H, KIM J H. On setting the parameters of quantum-inspired evolutionary algorithm for practical application[C]//Congress on Evolutionary Computation. Canberra, Australia: IEEE, 2003: 178-194.
  • 5HAN K H, KIM J H. Quantum-inspired evolutionary algorithms with a new termination criterion, Hε gate, and two-phase scheme[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(2): 156-169.
  • 6LI Pan-chi, LI Shi-yong. Quantum-inspired evolutionary algorithm for continuous spaces optimization based on bloch coordinates of qubits[J]. Neurocomputjng, 2008, 72(1-3): 581-591.
  • 7AKYILDIZ I F, MELODIA T, CHOWDHURY K R. A survey on wireless multimedia sensor networks[J]. Computer networks, 2007, 51(4): 921-960.
  • 8MA Hua-dong, LIU Yong-he. Some problems of directional sensor networks[J]. International Journal of Sensor Networks, 2007, 2(1): 44-52.
  • 9FAN Gao-juan, WANG Ru-chuan, HUANG Hai-ping, et al. Coverage-guaranteed sensor node deployment strategies for wireless sensor networks[J]. Sensors, 2010, 10(3): 2064-2087.
  • 10蒋一波,王万良,陈伟杰,郑建炜,姚信威.视频传感器网络中无盲区监视优化[J].软件学报,2012,23(2):310-322. 被引量:14

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部