期刊文献+

面向连续叠写的高精简中文手写识别方法研究 被引量:6

Study on High Compact Recognition Method for Continuously Overlaid Chinese Handwriting
下载PDF
导出
摘要 连续手写识别是中文手写输入技术的核心,自然、快捷地输入中文信息一直是模式识别乃至人工智能领域追求的目标。提出了一种有效克服小屏幕限制的连续叠写汉字识别方法。该方法基于切分-识别集成的解码框架,先使用过切分算法处理输入的书写轨迹;然后启用一种新颖的感知机算法判定字符的边界;随后采用来自字符分类模型、几何模型和语言模型的多种上下文信息进行路径解码。为适应不同类型的移动终端,特别提出了一种高效压缩字符分类模型的方法,以有效减少字符识别过程对存储和内存的占用。该识别方法已在Android平台上部署,并进行了大规模的测试实验。实验结果证实了该识别方法的性能和效率。 Continuous Chinese handwriting recognition is the primary bottleneck for Chinese handwritten character input method.Naturally and quickly inputting Chinese text is the fundamental goal to the pattern recognition field even to the artificial intelligence.A novel recognition method was proposed for overlaid Chinese handwriting.It follows a segmentation-recognition integrated framework.Firstly,an over-segmentation algorithm is used to partition the handwriting trajectory.Then a perceptron algorithm is developed to locate the candidate character boundaries.Finally,multiple contexts including character recognition score,geometrical score and linguistic score,are utilized to decode the optimal recognition path.To match different mobile terminals,an appealing compression algorithm was proposed to make the character classifier compact,which reduces the storage consumption both in memory fingerprint and disk storage.The principled method is successfully ported to Android platform,enabling overlaid Chinese handwriting to be input on smart phones and further tested on large overlaid Chinese handwriting samples.Experimental results verify the effectiveness and efficiency of the method.It also works smoothly on smart phone,whose overlapped handwriting input function makes handwriting input remarkably efficient.
出处 《计算机科学》 CSCD 北大核心 2015年第7期300-304,共5页 Computer Science
基金 国家自然科学基金(61203260) 黑龙江省博士后基金(LBH-Q13066) 哈尔滨工业大学科研创新基金(HIT.NSRIF.2015083)资助
关键词 模式识别 连续中文叠写 笔画分类 分类器压缩 集束搜索 Pattern recognition Overlaid Chinese handwriting Stroke classification Classifier compression Beam search
  • 相关文献

参考文献9

  • 1Shimodaira H, Sudo T, Nakai M, et al. On-line Overlaid-Hand- writing Recognition Based on Substroke HMMs[C]//Seventh International Conference on Document Analysis and Recogni- tion. Washington DC: IEEE, 2003 : 1043-1047.
  • 2Wan Xiang, Liu Chang-song, Zou Yan-ming. On-line Chinese Character Recognition System for Overlapping Samples[C] // 2011 International Conference on Document Analysis and Re- cognition. Washington DC: IEEE, 2011 : 799-803.
  • 3Zou Yan-ming, Liu Ying-fei, Liu Ying, et al. Overlapped hand- writing input on mobile phones[C]//2011 International Confe- rence on Document Analysis and Recognitiom Washington DC: IEEE, 2011 : 369-373.
  • 4Wang Qiu-feng, Yin Fei, Liu Cheng-lin. Handwritten Chinese Text Recognition by Integrating Multiple Contexts[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012,34(8) : 1469-1481.
  • 5Yin Fei,Wang Da-han,Wang Qiu-feng. CASIA Online and (3ff- line Chinese Handwriting Databases [C]//1 2011 International Conference on Document Analysis and Recognition. Washington DC: IEEE, 2011 : 37-41.
  • 6Wang Da-han, Liu Cheng-lin, Zhou Xiang-dong. An approach for real-time recognition of online Chinese handwritten sentences [J]. Pattern Recognition, 2012,45 (10) : 3661-3675.
  • 7Liu Cheng-lin. Classifier Combination Based on Con{idence Transformation[J]. Pattern Recognition, 2005,38 (1) : 11-28.
  • 8Teng Long,Jin Lian-wen. Building compact MQDF classifier for large character set recognition by subspace distribution sharing [J]. Pattern Recognition, 2008,41 (9) : 2916-2925.
  • 9Wang Yong-qiang, Huo Qiang. Building compact recognizers of handwritten Chinese characters using precision constrained Gaussian model, minimum classification error training and pa- rameter compression [J]. International Journal on Document Analysis and Recognition, 2011,14 (3) : 255-262.

同被引文献45

  • 1黄弋石,梁艳.手写识别建模数学方法研究[J].软件,2013,34(8):13-15. 被引量:10
  • 2陈先锋,舒志兵,赵英凯.“弹性”BP神经网络在识别带有噪声字母中的应用[J].计算机仿真,2005,22(9):153-155. 被引量:13
  • 3Leung K, Leung C. Recognition of handwritten Chinese characters by critical region analysis [J]. Pattern Recog- nition, 2010, 43(3): 949-961.
  • 4Gao T F, Liu C L. High accuracy handwritten Chinese character recognition using LDA-based compound distances [J]. Pattern Recognition, 2008, 41(11): 3442-3451.
  • 5Tao D, Liang L, Jin L, et al. Similar handwritten Chinese character recognition by kernel discriminative locality alignment [J]. Pattern Recognition Letters, 2014, 35(1): 186-194.
  • 6Badro H, Yahia H, Daoudi K. Fast and accurate texture recognition with multilayer convolution and multifractal analysis [C]. Computer Vision-ECCV, 2014: 505-519.
  • 7Russakovsky O, Deng J, Su H, et al. Image Net large scale visual recognition challenge [J]. CoRR, 2014:abs/1409. 0575.
  • 8Deng H, Stathopoulos G, Suen C Y. Error-correcting output coding for the convolutional neural network for optical character recognition [C]. Proceedings of IEEE International Conference on Document Analysis and Recognition, Barcelona, Spain, 2009: 581-585.
  • 9Yuan A, Bai G, Jiao L, et al. Offiine handwritten English character recognition based on convolutional neural network [C]. Proceedings of IAPR International Workshop on Document Analysis Systems, Gold Cost, QLD, 2012: 125-129.
  • 10Netzer Y, Wang T, Coates A, et al. Reading digits in natural images with unsupervised feature learning [C]. NIPS Workshop on Deep Learning and Unsupervised Feature Learning, Granada, Spain, 2011.

引证文献6

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部