期刊文献+

大修改结构特征向量重分析的混合基展开法

Mixed-basis Superposition Method for Eigenvector Reanalysis of Large Modified Structures
下载PDF
导出
摘要 为拓展基于矩阵摄动理论的结构重分析方法在实际工程中的适用范围,提高重分析计算精度,针对结构模态空间不完备和参数大修改提出了结构动力重分析的混合基展开法。利用已知的少数几个可能不连续的低阶模态构造出整个模态空间的一个混合基,同时将反映结构参数改变的质量矩阵和刚度矩阵的增量表示为高次增量形式,保留了经典摄动法简单易行的特点。数值算例表明,所提出方法适用范围广,极大提高了结构大修改下的动力重分析计算精度。 In order to extend the application range of the structure reanalysis method based on the matrix perturbation theory in engineering practice,and to improve the calculation precision of reanalysis,an improved mixed-basis superposition method of dynamical reanalysis is proposed for large modified structures without complete modal space.The known modes are used to construct a new mixed-basis of the modal space,and the changes in the stiffness matrix and mass matrix reflecting the changes of structural physical parameters are represented as the incremental form of higher order.The present method is as simple and easy to operate as the classical perturbation method.The numerical results show that the presented method yields high precision for dynamical reanalysis of large modified structures.
出处 《振动.测试与诊断》 EI CSCD 北大核心 2015年第3期559-562,597,共4页 Journal of Vibration,Measurement & Diagnosis
基金 国家重点基础研究发展计划("九七三"计划)资助项目(2010CB736104)
关键词 结构动力重分析 结构大修改 矩阵摄动法 混合基展开法 structural dynamical reanalysis large modifications of structures matrix perturbation method mixed-basis superposition method
  • 相关文献

参考文献15

  • 1Chen Suhuan. Matrix perturbation theory in structural dynamic designs[M]. Beijing: Science Press, 2007:
  • 2张美艳,韩平畴.基于有理逼近和灵敏度分析的结构动力重分析方法[J].振动与冲击,2006,25(4):50-52. 被引量:2
  • 3Yang Xiaowei, Chen Suhuan, Wu Baisheng. Eigenval- ue reanalysis of structures using perturbations and pad approximation[J]. Mechanical Systems and Sig- nal Processing, 2001, 15(2): 257-263.
  • 4Wu Baisheng, Li Zhengguang, Li Shunhua. The im- plementation of a vector-valued rational approximate method in structural reanalysis problems[J]. Comput- er Methods in Applied Mechanics and Engineering, 2003, 192(13-14):1773-1784.
  • 5Hurtado J E. Reanalysis of linear and nonlinear struc- tures using iterated Shanks transformation[J]. Com- puter Methods in Applied Mechanics and Engineering, 2002, 191(37-38): 4215-4229.
  • 6Chen Suhuan, Wu Xiaoming, Yang Zhijun. Eigensolu- tion reanalysis of modified structures using epsilon-al- gorithm[J]. International Journal for Numerical Meth- ods in Engineering, 2006, 66(13): 2115-2130.
  • 7Chen Suhuan, Ma Liang, Meng Guangwei. Dynamic response reanalysis for modified structures under arbi- trary excitation using epsilon-algorithm[J]. Comput- ers & Structures, 2008, 86(23-24): 2095-2101.
  • 8何建军,姜节胜.基于降阶模型的非经典阻尼结构拓扑修改的复模态重分析方法[J].振动与冲击,2009,28(7):50-54. 被引量:4
  • 9Kitsch U. Reanalysis and sensitivity reanalysis by combined approximations[J]. Structural and Multidis- ciplinary Optimization, 2010, 40(1): 1-15.
  • 10Kirsch U, Bogomolni M. Nonlinear and dynamic structural analysis using combined approximations[J]. Computers & Structures, 2007, 85(10): 566-578.

二级参考文献24

  • 1杨志军,陈塑寰,吴晓明.结构静态拓扑重分析的迭代组合近似方法[J].力学学报,2004,36(5):611-616. 被引量:14
  • 2孙亮,李顺华,李正光,吴柏生.结构动力重分析的向量值有理逼近方法[J].吉林大学学报(理学版),2005,43(3):258-261. 被引量:4
  • 3黄海,陈塑寰,孟光,郭克尖.结构静态拓扑重分析的摄动-Padé逼近法[J].固体力学学报,2005,26(3):321-324. 被引量:4
  • 4Noor A, Whitworth S. Reanalysis procedure for large struc- tural systems. International Journal for Numerical Meth- ods in Engineering, 1988, 26:1729-1748.
  • 5Kirsch U, Kocvara M, Zowe J. Accurate reanalysis of struc- tures by a preconditioned conjugate gradient method. In- ternational Journal for Numerical Method8 in Engineering, 2002, 55:233-251.
  • 6Wu B, Li Z. Static reanMysis of structures with added de- grees of freedom. Communications in Numerical Methods in Engineering, 2006, 22:269-281.
  • 7Chen S, Yang X, Wu B. Static displacement reanalysis of structures using perturbation and Pad6 approximation. Communications in Numerical Methods in Engineering, 2000. 16:75-82.
  • 8Kirsch U. Reduced basis approximations of structural displacements for optimal design. AIAA Journal, i991, 29: 1751-1758.
  • 9Kirsch U. A unified reanalysis approach for structural analysis, design, and optimization. Struct Multidisc Optim, 2003, 25:67-85.
  • 10Kirsch U, Bogomolni M. Procedures for approximate eigen- problem reanalysis of structures. International Journal for Numerical Methods in Engineering, 2004, 60:1969-1986.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部