期刊文献+

基于迭代平方根容积粒子滤波目标跟踪算法 被引量:1

Target Tracking Algorithm Based on Iterated Square Root Cubature Particle Filter
下载PDF
导出
摘要 针对粒子滤波目标跟踪算法粒子退化及跟踪精度问题,提出了一种基于马尔可夫链-蒙特卡罗(MCMC,Markov Chain Monte Carlo)的迭代平方根容积粒子滤波(ISRCPF,iterated square root cubature Kalman particle filter)算法(ISRCPF-MCMC)。在该滤波算法中,利用容积数值积分原则计算非线性随机函数的均值和方差,通过正交矩阵分解代替矩阵开方,在生成的粒子滤波建议分布中融入当前量测值,提高对系统后验概率的逼近程度。然后在此基础上融合MCMC抽样算法(MH,Metropolis Hasting)对所选建议分布进行优化,增加粒子多样性,以提高跟踪精度。仿真试验结果表明,ISRCPF-MCMC算法的估计误差与其他算法相比降低至0.403%。 In order to solve the problems of particle degradation and tracking accuracy in the particle filter target tracking algorithm,a new improved particle filter algorithm called iterated square root cubature Kalman particle filter(ISRCPF) is proposed based on Markov Chain Monte Carlo(MCMC).The new ISRCPF-MCMC uses the cubature principle of numerical integration to calculate the mean and covariance of nonlinear function.By using orthogonal matrix decomposition instead of matrix prescribing and adding the current measured values into the resulting particle filter proposal distribution to improve the degree of approximation to the system posterior density.After thtat,by together using MCMC sampling method,proposal distribution is optimized,particles be come,and accuracy is improved.Simulation results show that the estimation error of ISRCPF-MCMC algorithm is reduced to 0.403%compared with other algorithms.
出处 《测控技术》 CSCD 2015年第7期120-124,共5页 Measurement & Control Technology
基金 陕西省国际科技合作重点项目(2015KW-024) 兵器预研支撑基金(62201070317) 西安市技术转移促进工程项目(CXY1441(3))
关键词 目标跟踪 粒子滤波 迭代平方根容积卡尔曼滤波 马尔可夫链-蒙特卡罗 target tracking particle filter iterated square root cubature Kalman filter Markov Chain Monte Carlo
  • 相关文献

参考文献16

  • 1Gordon N J, Salmond D J, Smith A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation[ J] IEE Proceedings F Radar and Signal Processing, 1993,140 (2).
  • 2程水英,张剑云.粒子滤波评述[J].宇航学报,2008,29(4):1099-1111. 被引量:99
  • 3De Freitas N, Niranjan M, Gee A H, et al. Sequential Monte Carlo methods to train neural network models [ J ]. Neural Computation,2000,12 (4) :955 - 993.
  • 4Van der Merwe R, Douce A, De Freitas N, et al. The un- scented particle filter [ R ]. Cambridge, UK: Engineering De- partment, Cambridge University,2000 : 1 - 45.
  • 5郭文艳,韩崇昭,雷明.迭代无迹Kalman粒子滤波的建议分布[J].清华大学学报(自然科学版),2007,47(z2):1866-1869. 被引量:10
  • 6王小旭,潘泉,黄鹤,高昂.非线性系统确定采样型滤波算法综述[J].控制与决策,2012,27(6):801-812. 被引量:88
  • 7Wu Y X, Hu D W, Wu M P, et al. A numerical-integration perspective on Gaussian filters[J]. IEEE Transactions on Signal Processing, 2006,54 ( 8 ) : 2910 - 2921.
  • 8Arasaratnam I, Haykin S. Cubature Kalman filters [ J ]. IEEE Transactions on Automatic Control ,2009,54 (6).
  • 9Arasaratnam I, Haykin S, Hurd T R. Cubature Kalman filtering for continuous-discrete systems: theory and simulations [ J ]. IEEE Transactions on Signal Processing ,2010,58 ( 10 ).
  • 10穆静,蔡远利,张俊敏.容积粒子滤波算法及其应用[J].西安交通大学学报,2011,45(8):13-17. 被引量:17

二级参考文献125

共引文献233

同被引文献11

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部